Numerical methods for semiconductor heterostructures with band nonparabolicity

This article presents numerical methods for computing bound state energies and associated wave functions of three-dimensional semiconductor heterostructures with special interest in the numerical treatment of the effect of band nonparabolicity. A nonuniform finite difference method is presented to approximate a model of a cylindrical-shaped semiconductor quantum dot embedded in another semiconductor matrix. A matrix reduction method is then proposed to dramatically reduce huge eigenvalue systems to relatively very small subsystems. Moreover, the nonparabolic band structure results in a cubic type of nonlinear eigenvalue problems for which a cubic Jacobi-Davidson method with an explicit nonequivalence deflation method are proposed to compute all the desired eigenpairs. Numerical results are given to illustrate the spectrum of energy levels and the corresponding wave functions in rather detail.

[1]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[2]  Wen-Wei Lin,et al.  Nonequivalence deflation for the solution of matrix latent value problems , 1995 .

[3]  Erasmo A. de Andrada e Silva OPTICAL TRANSITION ENERGIES FOR LEAD-SALT SEMICONDUCTOR QUANTUM WELLS , 1999 .

[4]  O. Tretyak,et al.  Spin-orbit splitting in semiconductor quantum dots with a parabolic confinement potential , 2001 .

[5]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[6]  Andrew J. Williamson,et al.  InAs quantum dots: Predicted electronic structure of free-standing versus GaAs-embedded structures , 1999 .

[7]  P. Harrison Quantum wells, wires, and dots : theoretical and computational physics , 2016 .

[8]  T. Schäpers,et al.  Effect of the heterointerface on the spin splitting in modulation doped InxGa1−xAs/InP quantum wells for B→0 , 1998 .

[9]  Jaroslav Fabian,et al.  Spin relaxation of conduction electrons , 1999, cond-mat/9901170.

[10]  Simulation of a quantum-dot flash memory , 1998 .

[11]  Avner Friedman,et al.  Nonlinear eigenvalue problems , 1968 .

[12]  Peeters,et al.  Two-electron quantum disks. , 1996, Physical review. B, Condensed matter.

[13]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[14]  Weichung Wang,et al.  Analyzing and visualizing a discretized semilinear elliptic problem with Neumann boundary conditions , 2002 .

[15]  M. S. Skolnick,et al.  Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers , 1998 .

[16]  E. Lieb,et al.  Quantum Dots , 2019, Encyclopedia of Color Science and Technology.

[17]  P. Petroff,et al.  Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors , 1998 .

[18]  F. Bassani,et al.  Spin-orbit splitting of electronic states in semiconductor asymmetric quantum wells , 1997 .

[19]  M. Lai A note on finite difference discretizations for Poisson equation on a disk , 2001 .

[20]  Electronic structure of self-assembled quantum dots: comparison between density functional theory and diffusion quantum Monte Carlo , 2000, cond-mat/0003140.

[21]  Supriyo Bandyopadhyay Self-assembled nanoelectronic quantum computer based on the Rashba effect in quantum dots , 2000 .

[22]  D. DiVincenzo,et al.  Coupled quantum dots as quantum gates , 1998, cond-mat/9808026.

[23]  Quantum dot resonant cavity light emitting diode operating near 1300 nm , 1999 .

[24]  Karl Meerbergen,et al.  Locking and Restarting Quadratic Eigenvalue Solvers , 2000, SIAM J. Sci. Comput..

[25]  Nikolai N. Ledentsov,et al.  Energy relaxation by multiphonon processes in InAs/GaAs quantum dots , 1997 .

[26]  G. Medeiros-Ribeiro,et al.  Charging dynamics of InAs self-assembled quantum dots , 1997 .

[27]  Chien-Ping Lee,et al.  Electron energy level calculations for cylindrical narrow gap semiconductor quantum dot , 2001 .