Modal compact Hausdorff spaces

We introduce modal compact Hausdorff spaces as generalizations of modal spaces, and show these are coalgebras for the Vietoris functor on compact Hausdorff spaces. Modal compact regular frames and modal de Vries algebras are introduced as algebraic counterparts of modal compact Hausdorff spaces, and dualities are given for the categories involved. These extend the familiar Isbell and de Vries dualities for compact Hausdorff spaces, as well as the duality between modal spaces and modal algebras. As the first step in the logical treatment of modal compact Hausdorff spaces, a version of Sahlqvist correspondence is given for the positive modal language.

[1]  Ramon Jansana,et al.  Priestley Duality, a Sahlqvist Theorem and a Goldblatt-Thomason Theorem for Positive Modal Logic , 1999, Log. J. IGPL.

[2]  L. Nachbin Topology and order , 1965 .

[3]  Rajeev Goré,et al.  Bimodal Logics for Reasoning About Continuous Dynamics , 2000, Advances in Modal Logic.

[4]  Yde Venema,et al.  MacNeille completions and canonical extensions , 2005 .

[5]  M. Kracht Tools and Techniques in Modal Logic , 1999 .

[6]  Yde Venema,et al.  Stone Coalgebras , 2004, CMCS.

[7]  Nick Bezhanishvili,et al.  Preservation of Sahlqvist fixed point equations in completions of relativized fixed point Boolean algebras with operators , 2012 .

[8]  Jennifer M. Davoren,et al.  Topologies, continuity and bisimulations , 1999, RAIRO Theor. Informatics Appl..

[9]  Yde Venema,et al.  A Sahlqvist theorem for distributive modal logic , 2005, Ann. Pure Appl. Log..

[10]  M. Andrew Moshier,et al.  On the relationship between compact regularity and Gentzen's cut rule , 2004, Theor. Comput. Sci..

[11]  John R. Isbell,et al.  Atomless Parts of Spaces. , 1972 .

[12]  John Harding,et al.  Completions of Ordered Algebraic Structures: A Survey , 2008, Interval / Probabilistic Uncertainty and Non-Classical Logics.

[13]  Philipp Sünderhauf,et al.  On the Duality of Compact vs. Open , 1996 .

[14]  Guram Bezhanishvili,et al.  MACNEILLE COMPLETIONS OF MODAL ALGEBRAS , 2007 .

[15]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[16]  H. DE VRIES,et al.  COMPACT SPACES AND COMPACTIFICATIONS AN ALGEBRAIC APPROACH , 2017 .

[17]  Guram Bezhanishvili,et al.  Stone duality and Gleason covers through de Vries duality , 2010 .

[18]  Sergio Salbany,et al.  On compact* spaces and compactifications , 1974 .

[19]  S. Kakutani Weak Topology, Bicompact Set and the Principle of Duality , 1940 .

[20]  Guram Bezhanishvili,et al.  De Vries Algebras and Compact Regular Frames , 2011, Applied Categorical Structures.

[21]  Nitakshi Goyal,et al.  General Topology-I , 2017 .

[22]  Thomas Streicher,et al.  Semantics and logic of object calculi , 2002, LICS 2002.

[23]  M. Stone,et al.  A General Theory of Spectra. I: I. , 1940, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Valentin Goranko,et al.  Elementary canonical formulae: extending Sahlqvist's theorem , 2006, Ann. Pure Appl. Log..

[25]  Jennifer M. Davoren,et al.  On intuitionistic modal and tense logics and their classical companion logics: Topological semantics and bisimulations , 2009, Ann. Pure Appl. Log..

[26]  Kôsaku Yosida 70. On the Representation of the Vector Lattice , 1942 .

[27]  Yde Venema,et al.  The preservation of Sahlqvist equations in completions of Boolean algebras with operators , 1999 .

[28]  Samson Abramsky,et al.  A Cook's Tour of the Finitary Non-Well-Founded Sets , 2011, We Will Show Them!.

[29]  Yde Venema,et al.  Algebras and coalgebras , 2007, Handbook of Modal Logic.

[30]  M. Stone,et al.  A General Theory of Spectra: II. , 1941, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Algebraic logic , 1985, Problem books in mathematics.

[32]  Ian M. Hodkinson,et al.  Sahlqvist theorem for modal fixed point logic , 2012, Theor. Comput. Sci..

[33]  Eric S. Lander,et al.  AN ALGEBRAIC APPROACH , 1983 .

[34]  J. Donald Monk,et al.  Completions of BOOLEAN Algebras with operators , 1970 .

[35]  S. Kakutani Concrete Representation of Abstract (M)-Spaces (A characterization of the Space of Continuous Functions) , 1941 .

[36]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[37]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[38]  Bernhard Banaschewski,et al.  Stone-Čech compactification of locales II , 1984 .

[39]  A A Kirillov,et al.  On normed rings , 1987 .

[40]  Yde Venema,et al.  MacNeille completions of lattice expansions , 2007 .