Starting algorithms for a class of RK methods for index-2 DAEs

When semiexplicit differential-algebraic equations are solved with implicit Runge-Kutta methods (RK), the computational effort is dominated by the cost of solving the nonlinear systems, and therefore it is important to have good starting values to begin the iterations. For semiexplicit index-2 DAEs, starting algorithms without additional cost for RK methods with regular matrix coefficient were studied in a previous paper. However, the regularity condition on the matrix coefficient excludes some interesting methods like Lobatto IIIa and ESDIRK methods. In this paper, we study starting algorithms, without additional computational cost, for a class of Runge-Kutta methods in the case of index-2 DAEs.

[1]  Ch. Lubich On projected Runge-Kutta methods for differential-algebraic equations , 1991 .

[2]  Ian T. Cameron,et al.  A four-stage index 2 diagonally implicit Runge-Kutta method , 2002 .

[3]  Inmaculada Higueras,et al.  IRK methods for DAE: starting algorithms , 1999 .

[4]  Kevin Burrage,et al.  Order results for mono-implicit Runge-Kutta methods , 1994 .

[5]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[6]  Hester Bijl,et al.  Implicit Time Integration Schemes for the Unsteady Compressible Navier–Stokes Equations: Laminar Flow , 2002 .

[7]  Inmaculada Higueras,et al.  Starting algorithms for some DIRK methods , 2004, Numerical Algorithms.

[8]  Ernst Hairer,et al.  The numerical solution of differential-algebraic systems by Runge-Kutta methods , 1989 .

[9]  J. I. Montijano,et al.  On the Starting Algorithms for Fully Implicit Runge-Kutta Methods , 2000 .

[10]  L. Jay,et al.  Solution of Index 2 Implicit Differential-Algebraic Equations by Lobatto Runge-Kutta Methods , 2003 .

[12]  M. Calvo High order starting iterates for implicit Runge–Kutta methods: an improvement for variable‐step symplectic integrators , 2002 .

[13]  U. Ascher,et al.  Projected implicit Runge-Kutta methods for differential-algebraic equations , 1990 .

[14]  Inmaculada Higueras Sanz,et al.  Implicit runge kutta methods for daes: starting algorithms , 2000 .

[15]  M. P. Laburta,et al.  Starting algorithms for Gauss Runge-Kutta methods for Hamiltonian systems☆ , 2003 .

[16]  Laurent O. Jay,et al.  Iterative Solution of SPARK Methods Applied to DAEs , 2002, Numerical Algorithms.

[17]  M. P. Laburta Starting algorithms for IRK methods , 1997 .

[18]  Frank Cameron A class of low order DIRK methods for a class of DAEs , 1999 .

[19]  Laurent O. Jay,et al.  Convergence of a class of runge-kutta methods for differential-algebraic systems of index 2 , 1993 .

[20]  J. I. Montijano,et al.  Stabilized starting algorithms for collocation Runge-Kutta methods☆ , 2003 .

[21]  Jeff R. Cash,et al.  A Class of Implicit Runge-Kutta Methods for the Numerical Integration of Stiff Ordinary Differential Equations , 1975, JACM.

[22]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[23]  Manuel Calvo,et al.  Two-Step High Order Starting Values for Implicit Runge–Kutta Methods , 2003, Adv. Comput. Math..