Subwavelength waveguide for visible light

The authors demonstrate transmission of visible light through metallic coaxial nanostructures many wavelengths in length, with coaxial electrode spacing much less than a wavelength. Since the light frequency is well below the plasma resonance in the metal of the electrodes, the propagating mode reduces to the well-known transverse electromagnetic mode of a coaxial waveguide. They have thus achieved a faithful analog of the conventional coaxial cable for visible light.

[1]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[2]  G. Niklasson,et al.  Infrared optical properties of evaporated alumina films. , 1981, Applied optics.

[3]  Thomas J. Kempa,et al.  Receiving and transmitting light-like radio waves: Antenna effect in arrays of aligned carbon nanotubes , 2004 .

[4]  H. Lal,et al.  On the magnetic behaviour of light rare earth tungstates , 1982 .

[5]  M. Ibanescu,et al.  An All-Dielectric Coaxial Waveguide. , 2000, Science.

[7]  K. Fujimoto,et al.  Small Antennas , 1987 .

[8]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[9]  D. Pozar Microwave Engineering , 1990 .

[10]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[11]  Zhifeng Ren,et al.  Growth of large periodic arrays of carbon nanotubes , 2003 .

[12]  G. Stewart Optical Waveguide Theory , 1983, Handbook of Laser Technology and Applications.

[13]  A. Morimoto,et al.  Guiding of a one-dimensional optical beam with nanometer diameter. , 1997, Optics letters.

[14]  Bernhard Lamprecht,et al.  Non?diffraction-limited light transport by gold nanowires , 2002 .

[15]  M. Siegal,et al.  Synthesis of large arrays of well-aligned carbon nanotubes on glass , 1998, Science.

[16]  B. Santo,et al.  Solid State , 2012 .

[17]  K. Malloy,et al.  Enhanced infrared transmission through subwavelength coaxial metallic arrays. , 2005, Physical review letters.