Multiple Flights or Single Flight Instrument Fusion of Hyperspectral and ALS Data? A Comparison of their Performance for Vegetation Mapping

Fusion of remote sensing data often improves vegetation mapping, compared to using data from only a single source. The effectiveness of this fusion is subject to many factors, including the type of data, collection method, and purpose of the analysis. In this study, we compare the usefulness of hyperspectral (HS) and Airborne Laser System (ALS) data fusion acquired in separate flights, Multiple Flights Data Fusion (MFDF), and during a single flight through Instrument Fusion (IF) for the classification of non-forest vegetation. An area of 6.75 km2 was selected, where hyperspectral and ALS data was collected during two flights in 2015 and one flight in 2017. This data was used to classify three non-forest Natura 2000 habitats i.e., Xeric sand calcareous grasslands (code 6120), alluvial meadows of river valleys of the Cnidion dubii (code 6440), species-rich Nardus grasslands (code 6230) using a Random Forest classifier. Our findings show that it is not possible to determine which sensor, HS, or ALS used independently leads to a higher classification accuracy for investigated Natura 2000 habitats. Concurrently, increased stability and consistency of classification results was confirmed, regardless of the type of fusion used; IF, MFDF and varied information relevance of single sensor data. The research shows that the manner of data collection, using MFDF or IF, does not determine the level of relevance of ALS or HS data. The analysis of fusion effectiveness, gauged as the accuracy of the classification result and time consumed for data collection, has shown a superiority of IF over MFDF. IF delivered classification results that are more accurate compared to MFDF. IF is always cheaper than MFDF and the difference in effectiveness of both methods becomes more pronounced when the area of aerial data collection becomes larger.

[1]  C. Hladik,et al.  Salt Marsh Elevation and Habitat Mapping Using Hyperspectral and LIDAR Data , 2013 .

[2]  Angela Lausch,et al.  Gradient-Based Assessment of Habitat Quality for Spectral Ecosystem Monitoring , 2015, Remote. Sens..

[3]  P. Pellikka,et al.  MAPPING LAND COVER IN THE TAITA HILLS, SE KENYA, USING AIRBORNE LASER SCANNING AND IMAGING SPECTROSCOPY DATA FUSION , 2015 .

[4]  Qiang Zhang,et al.  Randomized SVD Methods in Hyperspectral Imaging , 2012, J. Electr. Comput. Eng..

[5]  Rupesh Shrestha,et al.  Combining airborne hyperspectral and LiDAR data across local sites for upscaling shrubland structural information: lessons for HyspIRI. , 2015 .

[6]  Kandarpa Kumar Sarma,et al.  Hyperspectral Remote Sensing Classifications: A Perspective Survey , 2016, Trans. GIS.

[7]  N. Pfeifer,et al.  BIODIVERSITY MAPPING VIA NATURA 2000 CONSERVATION STATUS AND EBV ASSESSMENT USING AIRBORNE LASER SCANNING IN ALKALI GRASSLANDS , 2016 .

[8]  Caspar A. Mücher,et al.  Quantifying structure of Natura 2000 heathland habitats using spectral mixture analysis and segmentation techniques on hyperspectral imagery , 2013 .

[9]  Norbert Pfeifer,et al.  Categorizing Grassland Vegetation with Full-Waveform Airborne Laser Scanning: A Feasibility Study for Detecting Natura 2000 Habitat Types , 2014, Remote. Sens..

[10]  Paul Scheunders,et al.  Habitat Mapping and Quality Assessment of NATURA 2000 Heathland Using Airborne Imaging Spectroscopy , 2017, Remote. Sens..

[11]  R. Dubayah,et al.  Integrating waveform lidar with hyperspectral imagery for inventory of a northern temperate forest , 2008 .

[12]  Gary A. Shaw,et al.  Spectral Imaging for Remote Sensing , 2003 .

[13]  Lucien Wald,et al.  Some terms of reference in data fusion , 1999, IEEE Trans. Geosci. Remote. Sens..

[14]  Angela Lausch,et al.  Mapping the local variability of Natura 2000 habitats with remote sensing , 2014 .

[15]  D. Roberts,et al.  Urban tree species mapping using hyperspectral and lidar data fusion , 2014 .

[16]  G. Asner,et al.  Fusing small-footprint waveform LiDAR and hyperspectral data for canopy-level species classification and herbaceous biomass modeling in savanna ecosystems , 2011 .

[17]  Brian R. Johnson,et al.  NEON: the first continental-scale ecological observatory with airborne remote sensing of vegetation canopy biochemistry and structure , 2010 .

[18]  Annekatrin Metz,et al.  Remote sensing of scattered Natura 2000 habitats using a one-class classifier , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[19]  George Alan Blackburn,et al.  Optimising the use of hyperspectral and LiDAR data for mapping reedbed habitats , 2011 .

[20]  M. Schaepman,et al.  Fusion of imaging spectroscopy and airborne laser scanning data for characterization of forest ecosystems – A review , 2014 .

[21]  Dorota Michalska-Hejduk,et al.  Application of multisensoral remote sensing data in the mapping of alkaline fens Natura 2000 habitat , 2016 .

[22]  Lawrence A. Corp,et al.  NASA Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager , 2013, Remote. Sens..

[23]  Da-Wen Sun,et al.  Principles and Applications of Hyperspectral Imaging in Quality Evaluation of Agro-Food Products: A Review , 2012, Critical reviews in food science and nutrition.

[24]  Hao Lu,et al.  LiCHy: The CAF's LiDAR, CCD and Hyperspectral Integrated Airborne Observation System , 2016, Remote. Sens..

[25]  The economics of remote sensing , 1991 .

[26]  Joachim Hill,et al.  Fusion of full-waveform lidar and imaging spectroscopy remote sensing data for the characterization of forest stands , 2013 .

[27]  Roberta E. Martin,et al.  Invasive species detection in Hawaiian rainforests using airborne imaging spectroscopy and LiDAR. , 2008 .

[28]  Caspar A. Mücher,et al.  Integrating remote sensing in Natura 2000 habitat monitoring: prospects on the way forward , 2011 .

[29]  Gregory Asner,et al.  Mapping Savanna Tree Species at Ecosystem Scales Using Support Vector Machine Classification and BRDF Correction on Airborne Hyperspectral and LiDAR Data , 2012, Remote. Sens..

[30]  D. R. Cutler,et al.  Utah State University From the SelectedWorks of , 2017 .

[31]  O. Mutanga,et al.  Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review , 2010, Wetlands Ecology and Management.

[32]  S. Grime,et al.  Data fusion in decentralized sensor networks , 1994 .

[33]  Piero Toscano,et al.  Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture , 2015, Remote. Sens..

[34]  N. Coops,et al.  Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada , 2010 .

[35]  Anna Jarocinska,et al.  Classification of Expansive Grassland Species in Different Growth Stages Based on Hyperspectral and LiDAR Data , 2018, Remote. Sens..

[36]  Lorenzo Bruzzone,et al.  Image fusion techniques for remote sensing applications , 2002, Inf. Fusion.

[37]  Alex Okiemute Onojeghuo,et al.  Object-based habitat mapping using very high spatial resolution multispectral and hyperspectral imagery with LiDAR data , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[38]  Juha Hyyppä,et al.  Absolute Radiometric Calibration of ALS Intensity Data: Effects on Accuracy and Target Classification , 2011, Sensors.

[39]  Dale J. Prediger,et al.  Coefficient Kappa: Some Uses, Misuses, and Alternatives , 1981 .

[40]  F. M. Danson,et al.  Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules , 2011 .

[41]  S. Rigatti Random Forest. , 2017, Journal of insurance medicine.

[42]  Mubarak Shah,et al.  Multi-sensor fusion: a perspective , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[43]  Claire Marais-Sicre,et al.  Effect of Training Class Label Noise on Classification Performances for Land Cover Mapping with Satellite Image Time Series , 2017, Remote. Sens..

[44]  Mario Chica-Olmo,et al.  An assessment of the effectiveness of a random forest classifier for land-cover classification , 2012 .

[45]  Emmanuel P. Baltsavias,et al.  A comparison between photogrammetry and laser scanning , 1999 .

[46]  Daniel J. Quinlan,et al.  P++, a C++ Virtual Shared Grids Based Programming Environment for Architecture-Independent Development of Structured Grid Applications , 1992, CONPAR.

[47]  Fernando Puente León,et al.  Informationsfusion – Eine Übersicht (Information Fusion – An Overview) , 2007 .

[48]  Roberta E. Martin,et al.  Carnegie Airborne Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor fusion , 2012 .

[49]  Birgit Kleinschmit,et al.  Adapting a Natura 2000 field guideline for a remote sensing-based assessment of heathland conservation status , 2017, Int. J. Appl. Earth Obs. Geoinformation.