Quantum algorithms for predicting the properties of complex materials

A central goal in computational materials science is to find efficient methods for solving the Kohn-Sham equation. The realization of this goal would allow one to predict properties such as phase stability, structure and optical and dielectric properties for a wide variety of materials. Typically, a solution of the Kohn-Sham equation requires computing a set of low-lying eigenpairs. Standard methods for computing such eigenpairs require two procedures: (a) maintaining the orthogonality of an approximation space, and (b) forming approximate eigenpairs with the Rayleigh-Ritz method. These two procedures scale cubically with the number of desired eigenpairs. Recently, we presented a method, applicable to any large Hermitian eigenproblem, by which the spectrum is partitioned among distinct groups of processors. This "divide and conquer" approach serves as a parallelization scheme at the level of the solver, making it compatible with existing schemes that parallelize at a physical level and at the level of primitive operations, e.g., matrix-vector multiplication. In addition, among all processor sets, the size of any approximation subspace is reduced, thereby reducing the cost of orthogonalization and the Rayleigh-Ritz method. We will address the key aspects of the algorithm, its implementation in real space, and demonstrate the nature of the algorithm by computing the electronic structure of a metal-semiconductor interface.

[1]  Yousef Saad,et al.  A Filtered Lanczos Procedure for Extreme and Interior Eigenvalue Problems , 2012, SIAM J. Sci. Comput..

[2]  Yousef Saad,et al.  A spectrum slicing method for the Kohn-Sham problem , 2012, Comput. Phys. Commun..

[3]  Taisuke Boku,et al.  First-principles calculations of electron states of a silicon nanowire with 100,000 atoms on the K computer , 2011, 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[4]  J. Chelikowsky,et al.  Ab initio molecular dynamics simulations using a Chebyshev-filtered subspace iteration technique , 2010 .

[5]  Yousef Saad,et al.  Numerical Methods for Electronic Structure Calculations of Materials , 2010, SIAM Rev..

[6]  L. Kronik,et al.  Real-space pseudopotential method for noncollinear magnetism within density functional theory , 2009 .

[7]  James R. Chelikowsky,et al.  Real-space pseudopotential method for first principles calculations of general periodic and partially periodic systems , 2008 .

[8]  D. Connelly,et al.  Analysis of Schottky barriers to ultrathin strained Si , 2008 .

[9]  M. L. Tiago,et al.  Quantum confinement and strong coulombic correlation in ZnO nanocrystals , 2008 .

[10]  Y. Saad,et al.  Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Yousef Saad,et al.  Self-consistent-field calculations using Chebyshev-filtered subspace iteration , 2006, J. Comput. Phys..

[12]  Yousef Saad,et al.  Filtered Conjugate Residual-type Algorithms with Applications , 2006, SIAM J. Matrix Anal. Appl..

[13]  Y. Saad,et al.  PARSEC – the pseudopotential algorithm for real‐space electronic structure calculations: recent advances and novel applications to nano‐structures , 2006 .

[14]  Constantine Bekas,et al.  Computing charge densities with partially reorthogonalized Lanczos , 2005, Comput. Phys. Commun..

[15]  K. Ho,et al.  Interface relaxation and electronic corrugation in the Pb/Si (111) -Pb-α-√3×√3 , 2005 .

[16]  M. Chou,et al.  Thermal stability and electronic structure of atomically uniform Pb films on Si(111). , 2004, Physical review letters.

[17]  James R. Chelikowsky,et al.  Real-space pseudopotential method for computing the electronic properties of periodic systems , 2004 .

[18]  M. Chou,et al.  Theory of quantum size effects in thin Pb(111) films , 2002 .

[19]  R. T. Tung Recent advances in Schottky barrier concepts , 2001 .

[20]  M. Hupalo,et al.  Uniform island height selection in the low temperature growth of Pb/Si(111)-(7×7) , 2001 .

[21]  Kesheng Wu,et al.  Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems , 2000, SIAM J. Matrix Anal. Appl..

[22]  K Wu,et al.  Thick-Restart Lanczos Method for Electronic Structure Calculations , 1999 .

[23]  W. Mönch,et al.  Influence of the interface structure on the barrier height of homogeneous Schottky contacts , 1999 .

[24]  M. Schreiber,et al.  The Anderson Model of Localization: A Challenge for Modern Eigenvalue Methods , 1998, SIAM J. Sci. Comput..

[25]  M. A. James,et al.  The atomic structure of the Si(111)-Pb buried interface grown on the Si(111)-(root 3 x root 3)-Pb reconstruction , 1998 .

[26]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[27]  Mönch Role of virtual gap states and defects in metal-semiconductor contacts. , 1987, Physical review letters.

[28]  Zhang,et al.  Interface potential changes and Schottky barriers. , 1985, Physical review. B, Condensed matter.

[29]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[30]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[31]  M. Cohen Schottky and Bardeen limits for Schottky barriers , 1979 .

[32]  Steven G. Louie,et al.  Ionicity and the theory of Schottky barriers , 1977 .

[33]  S. Louie,et al.  Self-Consistent Pseudopotential Calculation for a Metal-Semiconductor Interface , 1975 .

[34]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[35]  E. Antončík,et al.  On the theory of surface states , 1961 .

[36]  W. Schottky,et al.  Zur Halbleitertheorie der Sperrschicht- und Spitzengleichrichter , 1939 .

[37]  P. Dirac Quantum Mechanics of Many-Electron Systems , 1929 .

[38]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[39]  James R Chelikowsky The pseudopotential-density functional method applied to nanostructures , 2000 .

[40]  Von W. Schottky Abweichungen vom Ohmschen Gesetz in Halbleitern , 1999 .

[41]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[42]  D. C. SORENSENy,et al.  Accelerating the Lanczos Algorithm via Polynomial Spectral Transformations , 1997 .

[43]  H. Simon The Lanczos algorithm with partial reorthogonalization , 1984 .

[44]  W. Mönch,et al.  Influence of the interface structure on the barrier height of homogeneous Pb / n − Si ( 111 ) Schottky contacts , 2022 .