The lens protein alpha-B-crystallin of the blind subterranean mole-rat: high homology with sighted mammals.

[1]  Keyang Wang,et al.  The Effect of Stress on the Pattern of Phosphorylation of αA and αB Crystallin in the Rat Lens , 2000 .

[2]  W. Jeffery,et al.  Central role for the lens in cave fish eye degeneration. , 2000, Science.

[3]  E. Nevo,et al.  Spectral tuning of a circadian photopigment in a subterranean ‘blind’ mammal (Spalax ehrenbergi) , 1999, FEBS Letters.

[4]  R. Foster,et al.  Light detection in a 'blind' mammal , 1998, Nature Neuroscience.

[5]  H. Wilkens,et al.  Cloning of the alphaA-crystallin genes of a blind cave form and the epigean form of Astyanax fasciatus: a comparative analysis of structure, expression and evolutionary conservation. , 1998, Gene.

[6]  M. Kantorow,et al.  Phosphorylations of αA- and αB-crystallin , 1998 .

[7]  C. R. Taylor,et al.  Principles of Animal Design: The Optimization And Symmorphosis Debate , 1998 .

[8]  A. Cvekl,et al.  Pax-6 and αB-crystallin/Small Heat Shock Protein Gene Regulation in the Murine Lens INTERACTION WITH THE LENS-SPECIFIC REGIONS, LSR1 AND LSR2* , 1996, The Journal of Biological Chemistry.

[9]  J. Piatigorsky,et al.  Lens Crystallins of Invertebrates , 1996 .

[10]  R. Ben-Shlomo,et al.  Activity pattern and rhythm in the subterranean mole rat superspeciesSpalax ehrenbergi , 1995, Behavior genetics.

[11]  S. Bhat,et al.  Complete Structure and Expression of the Rat αB-Crystallin Gene , 1994 .

[12]  E. Nevo,et al.  Visual system of a naturally microphthalmic mammal: The blind mole rat, Spalax ehrenbergi , 1993, The Journal of comparative neurology.

[13]  Eviatar Nevo,et al.  Ocular regression conceals adaptive progression of the visual system in a blind subterranean mammal , 1993, Nature.

[14]  S. Bhat,et al.  alpha A-crystallin is expressed in non-ocular tissues. , 1992, The Journal of biological chemistry.

[15]  A. Lambowitz,et al.  Diverse gene sequences are overexpressed in werner syndrome fibroblasts undergoing premature replicative senescence , 1991, Molecular and cellular biology.

[16]  R. Moritz,et al.  Alpha B crystallin accumulation is a specific response to Ha-ras and v-mos oncogene expression in mouse NIH 3T3 fibroblasts , 1991, Molecular and cellular biology.

[17]  J. Lowe,et al.  Dementia with β-amyloid deposition: involvement of αB-crystallin supports two main diseases , 1990, The Lancet.

[18]  E. Nevo,et al.  The eye of the blind mole rat, Spalax ehrenbergi. Rudiment with hidden function? , 1990, Investigative ophthalmology & visual science.

[19]  T. Iwaki,et al.  Cellular distribution of alpha B-crystallin in non-lenticular tissues. , 1990, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[20]  W. D. de Jong,et al.  Evolution of eye lens crystallins: the stress connection. , 1989, Trends in biochemical sciences.

[21]  J. Piatigorsky,et al.  Enzyme/crystallins: Gene sharing as an evolutionary strategy , 1989, Cell.

[22]  T. Iwaki,et al.  αB-crystallin is expressed in non-lenticular tissues and accumulates in Alexander's disease brain , 1989, Cell.

[23]  J. Piatigorsky,et al.  Expression of the murine alpha B-crystallin gene is not restricted to the lens , 1989, Molecular and cellular biology.

[24]  E. Nevo,et al.  Major histocompatibility complex gene organization in the mole rat Spalax ehrenbergi: evidence for transfer of function between class II genes. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Leunissen,et al.  The lens protein alpha A-crystallin of the blind mole rat, Spalax ehrenbergi: evolutionary change and functional constraints. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R. Gibbs,et al.  The molecular basis of the sparse fur mouse mutation. , 1987, Science.

[27]  E. Nevo,et al.  Photoperiod perception in the blind mole rat (Spalax ehrenbergi, Nehring): involvement of the Harderian gland, atrophied eyes, and melatonin. , 1984, The Journal of experimental zoology.

[28]  E. Nevo,et al.  Photoperiodic effects on thermoregulation in a 'blind' subterranean mammal. , 1983, The Journal of experimental biology.

[29]  M. Kimura,et al.  The neutral theory of molecular evolution. , 1983, Scientific American.

[30]  W. W. Jong,et al.  The Amino-Acid Sequence of the αA2 Chain of Bovine α-Crystallin , 1973 .

[31]  E. Nevo,et al.  Adaptive radiation of blind subterranean mole rats : naming and revisiting the four sibling species of the Spalax ehrenbergi superspecies in Israel: Spalax galili ( 2n=52), S. golani (2n=54), S. carmeli (2n=58), and S. judaei (2n=60) , 2001 .

[32]  E. Nevo Mosaic Evolution of Subterranean Mammals: Regression, Progression, and Global Convergence , 1999 .

[33]  F. Müller,et al.  [Signal transduction in photoreceptor cells]. , 1998, Die Naturwissenschaften.

[34]  J. Leunissen,et al.  Evolution of the alpha-crystallin/small heat-shock protein family. , 1993, Molecular biology and evolution.

[35]  E. Nevo,et al.  Molecular Analysis of Photoreceptor Protein Function , 1992 .

[36]  J. Terkel,et al.  Light and Circadian Activity in the Blind Mole Rat , 1991 .

[37]  E. Nevo Evolutionary theory and processes of active speciation and adaptive radiation in subterranean mole rats, Spalax ehrenbergi superspecies, in Israel , 1991 .

[38]  W. D. de Jong,et al.  Lens proteins and their genes. , 1991, Progress in nucleic acid research and molecular biology.

[39]  J. Piatigorsky,et al.  Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. , 1988, Annual review of biochemistry.