Quantum control of a spin qubit coupled to a photonic crystal cavity

Using a long-lived quantum-dot spin qubit coupled to a GaAs-based photonic crystal cavity, researchers demonstrate complete quantum control of an electron spin qubit. By cleverly controlling the charge state of the InAs quantum dot using laser pulses, optical initialization, control and readout of an electron spin are achieved.

[1]  Andreas W. Schell,et al.  Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity , 2010, 1008.3504.

[2]  Allan S. Bracker,et al.  Optical control of one and two hole spins in interacting quantum dots , 2011 .

[3]  D. D. Awschalom,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999 .

[4]  M. S. Skolnick,et al.  Coherent optical control of the spin of a single hole in an InAs/GaAs quantum dot. , 2011, Physical review letters.

[5]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[6]  P. Michler Single quantum dots : fundamentals, applications, and new concepts , 2003 .

[7]  A. Fiore,et al.  Enhanced spontaneous emission in a photonic-crystal light-emitting diode , 2008, 0805.2750.

[8]  G. Medeiros-Ribeiro,et al.  Absorptive and dispersive optical responses of excitons in a single quantum dot , 2005, cond-mat/0509114.

[9]  Yanwen Wu,et al.  Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling. , 2007, Physical review letters.

[10]  P. Petroff,et al.  Stark-shift modulation absorption spectroscopy of single quantum dots , 2003 .

[11]  Thaddeus D. Ladd,et al.  Complete quantum control of a single quantum dot spin using ultrafast optical pulses , 2008, Nature.

[12]  S. Hughes,et al.  Modified spontaneous emission and qubit entanglement from dipole-coupled quantum dots in a photonic crystal nanocavity. , 2005 .

[13]  Christian Schneider,et al.  Ultrafast optical spin echo in a single quantum dot , 2010 .

[14]  Dieter Schuh,et al.  Optically programmable electron spin memory using semiconductor quantum dots , 2004, Nature.

[15]  Andrei Faraon,et al.  Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. , 2012, Physical review letters.

[16]  K. Vahala Optical microcavities , 2003, Nature.

[17]  Masaya Notomi,et al.  Manipulating light with strongly modulated photonic crystals , 2010 .

[18]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[19]  Wang Yao,et al.  Quantum computing by optical control of electron spins , 2010, 1006.5544.

[20]  A. Imamoğlu,et al.  Resonant Spectroscopy on Charge Tunable Quantum Dots in Photonic Crystal Structures , 2011, IEEE Journal of Quantum Electronics.

[21]  S. Economou,et al.  Optical spin initialization and nondestructive measurement in a quantum dot molecule , 2008, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[22]  C.-Y. Lu,et al.  Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence , 2010, Nature.

[23]  Yu. G. Kusrayev,et al.  Optical and magnetic anisotropies of the hole states in Stranski-Krastanov quantum dots , 2004 .

[24]  Bosong Sun,et al.  Persistent narrowing of nuclear-spin fluctuations in InAs quantum dots using laser excitation. , 2012, Physical review letters.

[25]  Katherine Truex,et al.  Fast spin rotations by optically controlled geometric phases in a charge-tunable InAs quantum dot. , 2010, Physical review letters.

[26]  D. Deppe,et al.  Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity. , 2007, Physical review letters.

[27]  A. Greilich,et al.  Nuclei-Induced Frequency Focusing of Electron Spin Coherence , 2007, Science.

[28]  Khaled Karrai,et al.  Quantum-Dot Spin-State Preparation with Near-Unity Fidelity , 2006, Science.

[29]  T. Asano,et al.  Spontaneous-emission control by photonic crystals and nanocavities , 2007 .

[30]  Gammon,et al.  Fine structure splitting in the optical spectra of single GaAs quantum dots. , 1996, Physical review letters.

[31]  Alex Greilich,et al.  Ultrafast optical control of entanglement between two quantum-dot spins , 2011 .

[32]  S. Economou,et al.  Fast Two-Qubit Gates in Semiconductor Quantum Dots using a Photonic Microcavity , 2012, 1204.5206.

[33]  M. Bayer,et al.  Ultrafast optical rotations of electron spins in quantum dots , 2009, 0910.3940.

[34]  S. Gulde,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.

[35]  E. Waks,et al.  Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. , 2012, Physical review letters.

[36]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[37]  Pierre M. Petroff,et al.  Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes , 2005, Science.

[38]  Technical University of Denmark,et al.  Electrical control of spontaneous emission and strong coupling for a single quantum dot , 2008, 0810.3010.

[39]  Andrei Faraon,et al.  An optical modulator based on a single strongly coupled quantum dot--cavity system in a p-i-n junction. , 2009, Optics express.

[40]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[41]  S. Hughes On the “quantum nature of a strongly coupled single quantum dot-cavity system” , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[42]  Andrei Faraon,et al.  Generation and transfer of single photons on a photonic crystal chip. , 2007, Optics express.

[43]  L. A. Coldren,et al.  Picosecond Coherent Optical Manipulation of a Single Electron Spin in a Quantum Dot , 2008, Science.

[44]  M. Kamp,et al.  Pulsed nuclear pumping and spin diffusion in a single charged quantum dot. , 2009, Physical review letters.

[45]  G. Rempe,et al.  An elementary quantum network of single atoms in optical cavities , 2012, Nature.