Random Weighting Method for Multisensor Data Fusion

This paper presents a new data fusion method by adopting random weighting estimation for optimal weighted fusion of multisensor observation data. This method adjusts in real time the weights of individual sensors according to variations in estimated sensor variances to obtain optimal weight distribution. Theories of random weighting estimation are established for optimal data fusion through optimal weighting distribution. Algorithms of random weighting estimation are developed to calculate sensor variances for determination of optimal random weighting factors. The fusion result in least mean square error is achieved directly from multisensor observation data, without requirement of any prior knowledge on unknown parameters. The mean square error estimated by the proposed method is not only smaller than from each individual sensor, but also smaller than by the mean of multisensor observation data.

[1]  Atr Lab,et al.  A Method for the Measurement of Temperature of Heat-treatment Based on Multisensor Data Fusion , 2000 .

[2]  Shu-Li Sun,et al.  Multisensor optimal information fusion input white noise deconvolution estimators , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[3]  Chongquan Zhong,et al.  A Weighted Fusion Algorithm of Multi-sensor Based on Optimized Grouping , 2006, 2006 6th World Congress on Intelligent Control and Automation.

[4]  Aboelmagd Noureldin,et al.  Optimizing neuro-fuzzy modules for data fusion of vehicular navigation systems using temporal cross-validation , 2007, Eng. Appl. Artif. Intell..

[5]  Shengli Wu,et al.  Improving high accuracy retrieval by eliminating the uneven correlation effect in data fusion , 2006 .

[6]  Alejandro F. Frangi,et al.  A Framework for Weighted Fusion of Multiple Statistical Models of Shape and Appearance , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Ren C. Luo,et al.  Multilayered fuzzy behavior fusion for real-time reactive control of systems with multiple sensors , 1996, IEEE Trans. Ind. Electron..

[8]  Renzo Rosso,et al.  Extremes in Nature , 2007 .

[9]  Shengli Wu,et al.  Assigning appropriate weights for the linear combination data fusion method in information retrieval , 2009, Inf. Process. Manag..

[10]  D. Kundu,et al.  Asymptotic properties of the least squares estimators of the parameters of the chirp signals , 2004 .

[11]  Gui Yun Tian,et al.  Data fusion algorithm for pulsed eddy current detection , 2007 .

[12]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[13]  J. Junkins,et al.  Optimal Estimation of Dynamic Systems , 2004 .

[14]  Yong Yan,et al.  A wavelet-based multisensor data fusion algorithm , 2004, IEEE Transactions on Instrumentation and Measurement.

[15]  H. B. Mitchell,et al.  Multi-Sensor Data Fusion: An Introduction , 2007 .

[16]  C. Rizos,et al.  Improving Adaptive Kalman Estimation in GPS/INS Integration , 2007, Journal of Navigation.

[17]  Ren C. Luo,et al.  Multisensor fusion and integration: approaches, applications, and future research directions , 2002 .

[18]  Bijan Shirinzadeh,et al.  Random weighting estimation of parameters in generalized Gaussian distribution , 2008, Inf. Sci..

[19]  Rick S. Blum,et al.  Theoretical analysis of an information-based quality measure for image fusion , 2008, Inf. Fusion.

[20]  Yilu Liu,et al.  Rough set and fuzzy wavelet neural network integrated with least square weighted fusion algorithm based fault diagnosis research for power transformers , 2008 .

[21]  Alexei Makarenko,et al.  Decentralized Bayesian algorithms for active sensor networks , 2006, Inf. Fusion.

[22]  Shesheng Gao,et al.  The Research of Data Fusion Method for Sample Mean Random Weighting Estimation , 2006, 2006 IEEE International Conference on Information Acquisition.

[23]  Shesheng Gao,et al.  The random weighting estimate of quantile process , 2004, Inf. Sci..

[24]  Wendong Xiao,et al.  Distributed Weighted Fusion Estimators with Random Delays and Packet Dropping , 2007 .

[25]  Bijan Shirinzadeh,et al.  Multi-sensor optimal data fusion for INS/GPS/SAR integrated navigation system , 2009 .

[26]  Tao Zhou,et al.  Law of large numbers for sample mean of random weighting estimate , 2003, Inf. Sci..

[27]  Robert J. Connor,et al.  Concepts of Independence for Proportions with a Generalization of the Dirichlet Distribution , 1969 .

[28]  Shengli Wu,et al.  Data Fusion with Correlation Weights , 2005, ECIR.

[29]  James A. Stover,et al.  A fuzzy-logic architecture for autonomous multisensor data fusion , 1996, IEEE Trans. Ind. Electron..

[30]  Jung-Chuan Chou,et al.  Weighted Data Fusion Use for Ruthenium Dioxide Thin Film pH Array Electrodes , 2009, IEEE Sensors Journal.

[31]  Z. John Daye,et al.  Shrinkage and model selection with correlated variables via weighted fusion , 2009, Comput. Stat. Data Anal..

[32]  D. L. Hall,et al.  Mathematical Techniques in Multisensor Data Fusion , 1992 .