Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data

Rubber-like materials consist of chain-like macromolecules that are more or less closely connected to each other via entanglements or cross-links. As an idealisation, this particular structure can be described as a completely random three-dimensional network. To capture the elastic and nearly incompressible mechanical behaviour of this material class, numerous phenomenological and micro-mechanically motivated models have been proposed in the literature. This contribution reviews fourteen selected representatives of these models, derives analytical stress–stretch relations for certain homogeneous deformation modes and summarises the details required for stress tensors and consistent tangent operators. The latter, although prevalently missing in the literature, are indispensable ingredients in utilising any kind of constitutive model for the numerical solution of boundary value problems by iterative approaches like the Newton–Raphson scheme. Furthermore, performance and validity of the models with regard to the classical experimental data on vulcanised rubber published by Treloar (Trans Faraday Soc 40:59–70, 1944) are evaluated. These data are here considered as a prototype or worst-case scenario of highly nonlinear elastic behaviour, although inelastic characteristics are clearly observable but have been tacitly ignored by many other authors.

[1]  L. Treloar,et al.  The inflation and extension of rubber tube for biaxial strain studies , 1978 .

[2]  R. Rivlin Large elastic deformations of isotropic materials IV. further developments of the general theory , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[3]  D. J. Montgomery,et al.  The physics of rubber elasticity , 1949 .

[4]  Erwan Verron,et al.  Comparison of Hyperelastic Models for Rubber-Like Materials , 2006 .

[5]  M. Kaliske,et al.  An extended tube-model for rubber elasticity : Statistical-mechanical theory and finite element implementation , 1999 .

[6]  L. Treloar,et al.  Stress-strain data for vulcanised rubber under various types of deformation , 1944 .

[7]  Stefan Hartmann,et al.  Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions , 2001 .

[8]  O. H. Yeoh,et al.  Characterization of Elastic Properties of Carbon-Black-Filled Rubber Vulcanizates , 1990 .

[9]  O. Kratky,et al.  Röntgenuntersuchung gelöster Fadenmoleküle , 1949 .

[10]  W. D. Wilson,et al.  Strain-energy density function for rubberlike materials , 1979 .

[11]  O. H. Yeoh,et al.  A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity , 1997 .

[12]  R. Ogden Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  Christian Miehe,et al.  Computation of isotropic tensor functions , 1993 .

[14]  Stefan Hartmann,et al.  Numerical studies on the identification of the material parameters of Rivlin's hyperelasticity using tension-torsion tests , 2001 .

[15]  Giuseppe Saccomandi,et al.  A Molecular-Statistical Basis for the Gent Constitutive Model of Rubber Elasticity , 2002 .

[16]  C. Miehe,et al.  Aspects of the formulation and finite element implementation of large strain isotropic elasticity , 1994 .

[17]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[18]  J. C. Simo,et al.  Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms , 1991 .

[19]  Tibi Beda,et al.  Hybrid continuum model for large elastic deformation of rubber , 2003 .

[20]  W. Kuhn,et al.  Über die Gestalt fadenförmiger Moleküle in Lösungen , 1934 .

[21]  S. Swanson A Constitutive Model for High Elongation Elastic Materials , 1985 .

[22]  A. Thomas The departures from the statistical theory of rubber elasticity , 1955 .

[23]  Giuseppe Saccomandi,et al.  Simple Torsion of Isotropic, Hyperelastic, Incompressible Materials with Limiting Chain Extensibility , 1999 .

[24]  S. Reese,et al.  A theory of finite viscoelasticity and numerical aspects , 1998 .

[25]  Dieter Weichert,et al.  Nonlinear Continuum Mechanics of Solids , 2000 .

[26]  M. Wang,et al.  Statistical Theory of Networks of Non‐Gaussian Flexible Chains , 1952 .

[27]  R. S. Rivlin,et al.  Large elastic deformations of isotropic materials. V. The problem of flexure , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[28]  Serdar Göktepe,et al.  A micro-macro approach to rubber-like materials—Part I: the non-affine micro-sphere model of rubber elasticity , 2004 .

[29]  A. Ibrahimbegovic Nonlinear Solid Mechanics , 2009 .

[30]  Hubert M. James,et al.  Theory of the Elastic Properties of Rubber , 1943 .

[31]  S. Göktepe Micro-macro approaches to rubbery and glassy polymers : predictive micromechanically-based models and simulations , 2007 .

[32]  A. Cohen,et al.  A Padé approximant to the inverse Langevin function , 1991 .

[33]  P. Currie Comparison of Incompressible Elastic Strain Energy Functions over the Attainable Region of Invariant Space , 2005 .

[34]  R. Rivlin Large Elastic Deformations of Isotropic Materials , 1997 .

[35]  V. Giessen,et al.  On improved 3-D non-Gaussian network models for rubber elasticity , 1992 .

[36]  N. Hashitsume,et al.  Statistical Theory of Rubber‐Like Elasticity. IV. (Two‐Dimensional Stretching) , 1951 .

[37]  S. Hartmann,et al.  Finite deformations of a carbon black-filled rubber. Experiment, optical measurement and material parameter identification using finite elements , 2003 .

[38]  Stefan Hartmann,et al.  Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility , 2003 .

[39]  Mary C. Boyce,et al.  Direct Comparison of the Gent and the Arruda-Boyce Constitutive Models of Rubber Elasticity , 1996 .

[40]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[41]  Mary C. Boyce,et al.  Constitutive modeling of the large strain time-dependent behavior of elastomers , 1998 .

[42]  S. R. Swanson,et al.  Large deformation finite element calculations for slightly compressible hyperelastic materials , 1985 .

[43]  O. Yeoh Some Forms of the Strain Energy Function for Rubber , 1993 .

[44]  P. Bazant,et al.  Efficient Numerical Integration on the Surface of a Sphere , 1986 .

[45]  M. Ekh Thermo-Elastic-Viscoplastic Modeling of IN792 , 2001 .

[46]  M. Mooney A Theory of Large Elastic Deformation , 1940 .

[47]  M. Kaliske,et al.  On the finite element implementation of rubber‐like materials at finite strains , 1997 .

[48]  D Weichert,et al.  Nonlinear Continuum Mechanics of Solids: Fundamental Mathematical and Physical Concepts , 2000 .

[49]  P. Haupt,et al.  Viscoplasticity of elastomeric materials: experimental facts and constitutive modelling , 2001 .

[50]  M. Boyce,et al.  A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials , 1993 .

[51]  L. J. Hart-Smith,et al.  Elasticity parameters for finite deformations of rubber-like materials , 1966 .

[52]  Jee Young Lim,et al.  Problems in determining the elastic strain energy function for rubber , 2010 .

[53]  P. Wriggers Nonlinear Finite Element Methods , 2008 .

[54]  Mario M. Attard,et al.  Hyperelastic constitutive modeling under finite strain , 2004 .

[55]  D. Seibert,et al.  Direct Comparison of Some Recent Rubber Elasticity Models , 2000 .

[56]  R. Landel,et al.  The Strain‐Energy Function of a Hyperelastic Material in Terms of the Extension Ratios , 1967 .

[57]  A. F. Fossum Parameter estimation for an internal variable model using nonlinear optimization and analytical , 1997 .

[58]  M. Shariff Strain energy function for filled and unfilled rubberlike material , 2000 .

[59]  Erwan Verron,et al.  A Comparison of the Hart-Smith Model with Arruda-Boyce and Gent Formulations for Rubber Elasticity , 2004 .

[60]  M. M. Carroll,et al.  A Strain Energy Function for Vulcanized Rubbers , 2011 .

[61]  Serdar Göktepe,et al.  A micro–macro approach to rubber-like materials. Part II: The micro-sphere model of finite rubber viscoelasticity , 2005 .

[62]  D. W. Saunders,et al.  Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[63]  M. Boyce,et al.  Constitutive models of rubber elasticity: A review , 2000 .

[64]  A. Gent,et al.  Forms for the stored (strain) energy function for vulcanized rubber , 1958 .

[65]  M. Kaliske,et al.  Theoretical and numerical formulation of a molecular based constitutive tube-model of rubber elasticity , 1997 .

[66]  A. Gent A New Constitutive Relation for Rubber , 1996 .

[67]  P. Flory,et al.  Thermodynamic relations for high elastic materials , 1961 .

[68]  R. S. Rivlin,et al.  Large elastic deformations of isotropic materials VI. Further results in the theory of torsion, shear and flexure , 1949, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[69]  Herbert A. Mang,et al.  3D finite element analysis of rubber‐like materials at finite strains , 1994 .