Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data
暂无分享,去创建一个
Paul Steinmann | Mokarram Hossain | Gunnar Possart | P. Steinmann | Mokarram Hossain | G. Possart | M. Hossain
[1] L. Treloar,et al. The inflation and extension of rubber tube for biaxial strain studies , 1978 .
[2] R. Rivlin. Large elastic deformations of isotropic materials IV. further developments of the general theory , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[3] D. J. Montgomery,et al. The physics of rubber elasticity , 1949 .
[4] Erwan Verron,et al. Comparison of Hyperelastic Models for Rubber-Like Materials , 2006 .
[5] M. Kaliske,et al. An extended tube-model for rubber elasticity : Statistical-mechanical theory and finite element implementation , 1999 .
[6] L. Treloar,et al. Stress-strain data for vulcanised rubber under various types of deformation , 1944 .
[7] Stefan Hartmann,et al. Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions , 2001 .
[8] O. H. Yeoh,et al. Characterization of Elastic Properties of Carbon-Black-Filled Rubber Vulcanizates , 1990 .
[9] O. Kratky,et al. Röntgenuntersuchung gelöster Fadenmoleküle , 1949 .
[10] W. D. Wilson,et al. Strain-energy density function for rubberlike materials , 1979 .
[11] O. H. Yeoh,et al. A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity , 1997 .
[12] R. Ogden. Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[13] Christian Miehe,et al. Computation of isotropic tensor functions , 1993 .
[14] Stefan Hartmann,et al. Numerical studies on the identification of the material parameters of Rivlin's hyperelasticity using tension-torsion tests , 2001 .
[15] Giuseppe Saccomandi,et al. A Molecular-Statistical Basis for the Gent Constitutive Model of Rubber Elasticity , 2002 .
[16] C. Miehe,et al. Aspects of the formulation and finite element implementation of large strain isotropic elasticity , 1994 .
[17] R. D. Wood,et al. Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .
[18] J. C. Simo,et al. Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms , 1991 .
[19] Tibi Beda,et al. Hybrid continuum model for large elastic deformation of rubber , 2003 .
[20] W. Kuhn,et al. Über die Gestalt fadenförmiger Moleküle in Lösungen , 1934 .
[21] S. Swanson. A Constitutive Model for High Elongation Elastic Materials , 1985 .
[22] A. Thomas. The departures from the statistical theory of rubber elasticity , 1955 .
[23] Giuseppe Saccomandi,et al. Simple Torsion of Isotropic, Hyperelastic, Incompressible Materials with Limiting Chain Extensibility , 1999 .
[24] S. Reese,et al. A theory of finite viscoelasticity and numerical aspects , 1998 .
[25] Dieter Weichert,et al. Nonlinear Continuum Mechanics of Solids , 2000 .
[26] M. Wang,et al. Statistical Theory of Networks of Non‐Gaussian Flexible Chains , 1952 .
[27] R. S. Rivlin,et al. Large elastic deformations of isotropic materials. V. The problem of flexure , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[28] Serdar Göktepe,et al. A micro-macro approach to rubber-like materials—Part I: the non-affine micro-sphere model of rubber elasticity , 2004 .
[29] A. Ibrahimbegovic. Nonlinear Solid Mechanics , 2009 .
[30] Hubert M. James,et al. Theory of the Elastic Properties of Rubber , 1943 .
[31] S. Göktepe. Micro-macro approaches to rubbery and glassy polymers : predictive micromechanically-based models and simulations , 2007 .
[32] A. Cohen,et al. A Padé approximant to the inverse Langevin function , 1991 .
[33] P. Currie. Comparison of Incompressible Elastic Strain Energy Functions over the Attainable Region of Invariant Space , 2005 .
[34] R. Rivlin. Large Elastic Deformations of Isotropic Materials , 1997 .
[35] V. Giessen,et al. On improved 3-D non-Gaussian network models for rubber elasticity , 1992 .
[36] N. Hashitsume,et al. Statistical Theory of Rubber‐Like Elasticity. IV. (Two‐Dimensional Stretching) , 1951 .
[37] S. Hartmann,et al. Finite deformations of a carbon black-filled rubber. Experiment, optical measurement and material parameter identification using finite elements , 2003 .
[38] Stefan Hartmann,et al. Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility , 2003 .
[39] Mary C. Boyce,et al. Direct Comparison of the Gent and the Arruda-Boyce Constitutive Models of Rubber Elasticity , 1996 .
[40] R. Ogden. Non-Linear Elastic Deformations , 1984 .
[41] Mary C. Boyce,et al. Constitutive modeling of the large strain time-dependent behavior of elastomers , 1998 .
[42] S. R. Swanson,et al. Large deformation finite element calculations for slightly compressible hyperelastic materials , 1985 .
[43] O. Yeoh. Some Forms of the Strain Energy Function for Rubber , 1993 .
[44] P. Bazant,et al. Efficient Numerical Integration on the Surface of a Sphere , 1986 .
[45] M. Ekh. Thermo-Elastic-Viscoplastic Modeling of IN792 , 2001 .
[46] M. Mooney. A Theory of Large Elastic Deformation , 1940 .
[47] M. Kaliske,et al. On the finite element implementation of rubber‐like materials at finite strains , 1997 .
[48] D Weichert,et al. Nonlinear Continuum Mechanics of Solids: Fundamental Mathematical and Physical Concepts , 2000 .
[49] P. Haupt,et al. Viscoplasticity of elastomeric materials: experimental facts and constitutive modelling , 2001 .
[50] M. Boyce,et al. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials , 1993 .
[51] L. J. Hart-Smith,et al. Elasticity parameters for finite deformations of rubber-like materials , 1966 .
[52] Jee Young Lim,et al. Problems in determining the elastic strain energy function for rubber , 2010 .
[53] P. Wriggers. Nonlinear Finite Element Methods , 2008 .
[54] Mario M. Attard,et al. Hyperelastic constitutive modeling under finite strain , 2004 .
[55] D. Seibert,et al. Direct Comparison of Some Recent Rubber Elasticity Models , 2000 .
[56] R. Landel,et al. The Strain‐Energy Function of a Hyperelastic Material in Terms of the Extension Ratios , 1967 .
[57] A. F. Fossum. Parameter estimation for an internal variable model using nonlinear optimization and analytical , 1997 .
[58] M. Shariff. Strain energy function for filled and unfilled rubberlike material , 2000 .
[59] Erwan Verron,et al. A Comparison of the Hart-Smith Model with Arruda-Boyce and Gent Formulations for Rubber Elasticity , 2004 .
[60] M. M. Carroll,et al. A Strain Energy Function for Vulcanized Rubbers , 2011 .
[61] Serdar Göktepe,et al. A micro–macro approach to rubber-like materials. Part II: The micro-sphere model of finite rubber viscoelasticity , 2005 .
[62] D. W. Saunders,et al. Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[63] M. Boyce,et al. Constitutive models of rubber elasticity: A review , 2000 .
[64] A. Gent,et al. Forms for the stored (strain) energy function for vulcanized rubber , 1958 .
[65] M. Kaliske,et al. Theoretical and numerical formulation of a molecular based constitutive tube-model of rubber elasticity , 1997 .
[66] A. Gent. A New Constitutive Relation for Rubber , 1996 .
[67] P. Flory,et al. Thermodynamic relations for high elastic materials , 1961 .
[68] R. S. Rivlin,et al. Large elastic deformations of isotropic materials VI. Further results in the theory of torsion, shear and flexure , 1949, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[69] Herbert A. Mang,et al. 3D finite element analysis of rubber‐like materials at finite strains , 1994 .