Deformation mode and wall thickness variation in conventional spinning of metal sheets

[1]  Zebang Zheng,et al.  Fracture prediction for metal sheet deformation under different stress states with uncoupled ductile fracture criteria , 2022, Journal of Manufacturing Processes.

[2]  J. L. Wang,et al.  Size effects in multi-scale materials processing and manufacturing , 2021 .

[3]  H. Arai,et al.  Evolution of Strain State of a Rolled Aluminum Sheet in Multi-Pass Conventional Spinning , 2021 .

[4]  M. Fu,et al.  Modelling of ultra-thin steel sheet in two-stage tensile deformation considering strain path change and grain size effect and application in multi-stage microforming , 2021 .

[5]  Xinyun Wang,et al.  Theoretical prediction of flange wrinkling in the first-pass conventional spinning of dual-metal sheets , 2021 .

[6]  M. Zhan,et al.  A new robust theoretical prediction model for flange wrinkling in conventional spinning , 2021 .

[7]  J. Ma,et al.  Analytical springback assessment in flexible stretch bending of complex shapes , 2021 .

[8]  N. Harshavardhana,et al.  Multi response optimization of setting input variables for getting better cylindrical cups in sheet metal spinning of Al 6061 – T6 by Grey relation analysis , 2020 .

[9]  Yixi Zhao,et al.  Study on flange-constrained spinning process for hemispherical aluminum alloy part , 2020 .

[10]  M. Fu,et al.  Interactive effect of grain size and crystal structure on deformation behavior in progressive micro-scaled deformation of metallic materials , 2020 .

[11]  X. Shu,et al.  Numerical and experimental analysis on multi-pass conventional spinning of the cylindrical part with GH3030 , 2019, The International Journal of Advanced Manufacturing Technology.

[12]  M. Zhan,et al.  Determination of formability considering wrinkling defect in first-pass conventional spinning with linear roller path , 2019, Journal of Materials Processing Technology.

[13]  P. Šugár,et al.  The effect of conventional metal spinning parameters on the spun-part wall thickness variation , 2018, IOP Conference Series: Materials Science and Engineering.

[14]  Hayato Iwasaki,et al.  Deformation characteristics of Ti-6Al-4V plate in mandrel-free hot spinning , 2018 .

[15]  Zhong-qin Lin,et al.  Theoretical prediction of flange wrinkling in first-pass conventional spinning of hemispherical part , 2017 .

[16]  Pavel Hora,et al.  Numerical modelling, validation and analysis of multi-pass sheet metal spinning processes , 2017 .

[17]  Hao Wang,et al.  A study of severe flange wrinkling in first-pass conventional spinning of hemispherical part , 2017 .

[18]  Hai Guo,et al.  A study of multi-pass scheduling methods for die-less spinning , 2017 .

[19]  Hayato Iwasaki,et al.  Investigation of forming accuracy in mandrel-free hot-spinning , 2017 .

[20]  Peter Šugár,et al.  Analysis of the Effect of Process Parameters on Part Wall Thickness Variation in Conventional Metal Spinning of Cr-Mn Austenitic Stainless Steels , 2016 .

[21]  M. Gadala,et al.  Deep spinning of sheet metals , 2015 .

[22]  Hirohiko Arai,et al.  Formability in synchronous multipass spinning using simple pass set , 2015 .

[23]  Julian M. Allwood,et al.  Parametric toolpath design in metal spinning , 2015 .

[24]  Xiao Gangfeng,et al.  A review of process advancement of novel metal spinning , 2014 .

[25]  Yong Li,et al.  A numerical study of the effects of roller paths on dimensional precision in die-less spinning of sheet metal , 2014 .

[26]  Hui Long,et al.  Roller path design by tool compensation in multi-pass conventional spinning , 2013 .

[27]  P. Šugár,et al.  Analysis of Dimensional Accuracy of Spun Parts by Taguchi Approach , 2012 .

[28]  L. Wang,et al.  A study of effects of roller path profiles on tool forces and part wall thickness variation in conventional metal spinning , 2011 .

[29]  Hui Long,et al.  Effects of the roller feed ratio on wrinkling failure in conventional spinning of a cylindrical cup , 2011 .

[30]  Hui Long,et al.  Investigation of material deformation in multi-pass conventional metal spinning , 2011 .

[31]  Peter Hartley,et al.  Optimization of conventional spinning process parameters by means of numerical simulation and statistical analysis , 2010 .

[32]  Julian M. Allwood,et al.  A review of the mechanics of metal spinning , 2010 .

[33]  Andrea Grosso,et al.  Finding maximin latin hypercube designs by Iterated Local Search heuristics , 2009, Eur. J. Oper. Res..

[34]  Peter Hartley,et al.  Numerical simulation of single and dual pass conventional spinning processes , 2009 .

[35]  Hui Long,et al.  Analysis of conventional spinning process of a cylindrical part using finite element methods , 2008 .

[36]  Hidetoshi Kotera,et al.  A study of the one-path deep drawing spinning of cups , 2005 .

[37]  Trevor A. Dean,et al.  A review of spinning, shear forming and flow forming processes , 2003 .

[38]  Yang Hui,et al.  A study of the stress and strain distributions of first-pass conventional spinning under different roller-traces , 2002 .

[39]  J. Monaghan,et al.  Metal forming: an analysis of spinning processes , 2000 .

[40]  D. C. Kang,et al.  Study on the deformation mode of conventional spinning of plates , 1999 .

[41]  M. M. El-Khabeery,et al.  On the conventional simple spinning of cylindrical aluminium cups , 1991 .

[42]  Frédéric Barlat,et al.  Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions , 1989 .