Optical sensing techniques for temperature measurement.

Temperature is an important parameter that needs accurate measurement. Theoretical descriptions of the fluorescence ratio method, fluorescence lifetime sensing, and interferometric methods for temperature measurement are given. Fluorescence lifetime sensing calibration plots have been developed for temperature measurement from 20°C to 600°C using Er(3+)-doped glass, and from 20°C to 90°C using Sm(3+)-doped CaF(2). Lifetime sensing results of Pr(3+)-doped YAG and Ho(3+)-doped fluoride crystals for temperature measurement are also summarized. Mach-Zehnder interferometer measurements revealed that the passage of a 300 mW laser beam of 915 nm changed the temperature of the Yb(3+)-doped YAG crystal by 7.1°C. The interferometer technique is useful for measuring absolute temperature changes in laser cooling studies.

[1]  B. R. Reddy,et al.  High temperature measurement using luminescence of Pr3+ doped YAG and Ho3+ doped CaF2 , 2009 .

[2]  B. R. Reddy,et al.  Interferometric measurement of laser heating in praseodymium-doped YAG crystal. , 2011, Applied optics.

[3]  S. Wade,et al.  Fluorescence intensity ratio technique for optical fiber point temperature sensing , 2003 .

[4]  Roberto Roncella,et al.  Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding. , 2011, Optics letters.

[5]  T. Fan,et al.  Thermal Coefficients of the Optical Path Length and Refractive Index in YAG. , 1998, Applied optics.

[6]  M. J. Weber,et al.  Probabilities for Radiative and Nonradiative Decay of Er 3 + in La F 3 , 1967 .

[7]  M. Khaleel,et al.  Determination of temperature in glass with a fluorescence method , 2001 .

[8]  Felix Jiri Weinberg,et al.  A laser interferometer for combustion, aerodynamics and heat transfer studies , 1972 .

[9]  K. Sooley,et al.  Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature , 2009 .

[10]  Peter D. Wentzell,et al.  Detection Limits of Chemical Sensors: Applications and Misapplications , 2012 .

[11]  H. Moos,et al.  Multiphonon orbit-lattice relaxation in LaBr sub 3, LaCl sub 3, and LaF sub 3. , 1967 .

[12]  T. Fan,et al.  Thermal coefficients of the expansion and refractive index in YAG. , 1999, Applied optics.

[13]  M. Strojnik,et al.  Experimental results of ratio-based erbium-doped-silica temperature sensor , 2003 .

[14]  W. H. Lowdermilk,et al.  Multiphonon relaxation of rare-earth ions in oxide glasses , 1977 .

[15]  Tong Sun,et al.  Dual temperature and strain measurement with the combined fluorescence lifetime and Bragg wavelength shift approach in doped optical fiber. , 2002, Applied optics.

[16]  Yage Zhan,et al.  Fiber grating sensors for high-temperature measurement , 2008 .

[17]  J. S. Aitchison,et al.  All optical integrated upconversion fluorescence-based point temperature sensing system using Er3+-doped silica-on-silicon waveguides , 2002 .

[18]  Praveena Kommidi,et al.  Design of a high temperature sensing system using luminescence lifetime measurement. , 2008, The Review of scientific instruments.

[19]  Zhiyi Zhang,et al.  Erbium/ytterbium fluorescence based fiber optic temperature sensor system , 2000 .

[20]  Carlton Farley,et al.  Mach-Zehnder interferometric measurement of laser heating/cooling in Yb3+: YAG , 2011, OPTO.

[21]  G. Gillies,et al.  Remote thermometry with thermographic phosphors: Instrumentation and applications , 1997 .

[22]  Mansoor Sheik-Bahae,et al.  Differential luminescence thermometry in semiconductor laser cooling , 2006, SPIE OPTO.

[23]  Marshall Lapp,et al.  Raman scattering studies of combustion , 1976 .

[24]  B. Rami Reddy,et al.  Fluorescence lifetime sensing of temperature , 2006, SPIE Optics East.

[25]  Malinowski,et al.  Dynamics of the IR-to-blue wavelength upconversion in Pr3+-doped yttrium aluminum garnet and LiYF4 crystals. , 1994, Physical review. B, Condensed matter.