5.1 CONVENTIONAL ACTUATORS, SHAPE MEMORY ALLOYS, AND ELECTRORHEOLOGICAL FLUIDS

5.1 CONVENTIONAL ACTUATORS, SHAPE MEMORY ALLOYS, AND ELECTRORHEOLOGICAL FLUIDS ............................................................................................................................................................. 1 5.1.

[1]  Masamichi Sakaguchi,et al.  Precise position control of robot arms using a homogeneous ER fluid , 1999 .

[2]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[3]  Junji Furusho,et al.  Vibration suppression control of robot arms using a homogeneous-type electrorheological fluid , 2000 .

[4]  S. Hirose,et al.  Mathematical model and experimental verification of shape memory alloy for designing micro actuator , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.

[5]  Gareth J. Monkman,et al.  An Electrorheological Tactile Display , 1992, Presence: Teleoperators & Virtual Environments.

[6]  J. L. Sproston,et al.  Applications of electro-rheological fluids in vibration control: a survey , 1996 .

[7]  C. Mavroidis,et al.  Experimental Nonlinear Dynamics of a Shape Memory Alloy Wire Bundle Actuator , 2001 .

[8]  Maurice I. Zeldman What Every Engineer Should Know about Robots , 1984 .

[9]  Paolo Dario,et al.  Control Experiments on two SMA based micro-actuators , 1997, ISER.

[10]  C. Zukoski,et al.  Electrorheological fluids as colloidal suspensions , 1989 .

[11]  Grigore C. Burdea,et al.  Force and Touch Feedback for Virtual Reality , 1996 .

[12]  John P. Coulter,et al.  Electrorheological Fluids — Materials and Applications , 1992 .

[13]  Koji Ikuta,et al.  Development of a shape memory alloy actuator. Improvement of output performance by the introduction of a sigma-mechanism , 1988, Adv. Robotics.

[14]  Vincent Hayward,et al.  Variable structure control of shape memory alloy actuators , 1997 .

[15]  Koji Ikuta,et al.  A New Design Method of Servo-actuators Based on the Shape Memory Effect , 1985 .

[16]  Seung-Bok Choi Vibration Control of a Flexible Structure Using ER Dampers , 1999 .

[17]  Ian W. Hunter,et al.  A comparative analysis of actuator technologies for robotics , 1992 .

[18]  C. Mavroidis,et al.  DESIGN AND DYNAMICS OF A SHAPE MEMORY ALLOY WIRE BUNDLE ACTUATOR , 1999 .

[19]  Koji Ikuta,et al.  Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[20]  Dominiek Reynaerts,et al.  Development of a high performance robotic actuator , 1991 .

[21]  K. Kuribayashi A New Actuator of a Joint Mechanism Using TiNi Alloy Wire , 1986 .

[22]  J. Makin,et al.  The Electro-Rheological Clutch: Design, Performance Characteristics and Operation , 1993 .

[23]  W. M. Winslow Induced Fibration of Suspensions , 1949 .

[24]  David W. L. Wang,et al.  A dissipativity approach to stability of a shape memory alloy position control system , 1998, IEEE Trans. Control. Syst. Technol..

[25]  David W. L. Wang,et al.  Modeling and L2-stability of a shape memory alloy position control system , 1998, IEEE Trans. Control. Syst. Technol..

[26]  Koji Ikuta,et al.  Development of shape-memory alloy actuators. Performance assessment and introduction of a new composing approach , 1988, Adv. Robotics.

[27]  Wolfram Stadler Analytical Robotics And Mechatronics , 1995 .

[28]  P. M. Taylor,et al.  SURFACE FEEDBACK FOR VIRTUAL ENVIRONMENT SYSTEMS USING ELECTRORHEOLOGICAL FLUIDS , 1996 .