Time-dependent stabilization in AdS/CFT

[1]  R. Janik,et al.  Numerical relativity approach to the initial value problem in asymptotically anti–de Sitter spacetime for plasma thermalization: An ADM formulation , 2012, 1203.0755.

[2]  Eric Gourgoulhon,et al.  Numerical Relativity: Solving Einstein's Equations on the Computer , 2011 .

[3]  D. Garfinkle,et al.  On field theory thermalization from gravitational collapse , 2011, 1110.5823.

[4]  A. Rostworowski,et al.  A Comment on AdS collapse of a scalar field in higher dimensions , 2011, 1108.4539.

[5]  D. Garfinkle,et al.  Rapid Thermalization in Field Theory from Gravitational Collapse , 2011, 1106.2339.

[6]  E. Rabinovici,et al.  AdS crunches, CFT falls and cosmological complementarity , 2011, 1102.3015.

[7]  E. Rabinovici,et al.  Holography of AdS vacuum bubbles , 2010, 1003.4966.

[8]  A. Bernamonti,et al.  D-Brane Potentials from Multi-Trace Deformations in AdS/CFT , 2009, 0907.0889.

[9]  Eduardo J S Villaseñor,et al.  The time-dependent quantum harmonic oscillator revisited: Applications to Quantum Field Theory , 2009, 0903.0289.

[10]  P. Chesler,et al.  Horizon formation and far-from-equilibrium isotropization in a supersymmetric Yang-Mills plasma. , 2008, Physical review letters.

[11]  J. Maldacena,et al.  N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals , 2008, 0806.1218.

[12]  I. Papadimitriou,et al.  Multi-trace deformations in AdS/CFT: exploring the vacuum structure of the deformed CFT , 2007, hep-th/0703152.

[13]  M. Porrati,et al.  Multitrace deformations of vector and adjoint theories and their holographic duals , 2005, hep-th/0511061.

[14]  G. Horowitz,et al.  Holographic description of AdS cosmologies , 2005, hep-th/0503071.

[15]  G. Horowitz,et al.  Designer gravity and field theory effective potentials. , 2004, Physical review letters.

[16]  S. Fishman,et al.  Time-independent approximations for periodically driven systems with friction. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  G. Horowitz,et al.  Towards a Big Crunch Dual , 2004, hep-th/0406134.

[18]  T. Hertog,et al.  Black holes with scalar hair and asymptotics in N = 8 supergravity , 2004, hep-th/0404261.

[19]  Shmuel Fishman,et al.  LETTER TO THE EDITOR: Trapping of particles by lasers: the quantum Kapitza pendulum , 2003 .

[20]  B. Pioline,et al.  Open strings in relativistic ion traps , 2003, hep-th/0302159.

[21]  S. Fishman,et al.  Time independent description of rapidly oscillating potentials. , 2003, Physical review letters.

[22]  S. Fishman,et al.  Effective Hamiltonians for periodically driven systems , 2003, nlin/0301033.

[23]  G. Kunstatter,et al.  Anti-de Sitter gravitational collapse , 2002, gr-qc/0210011.

[24]  D. Kutasov,et al.  From big bang to big crunch and beyond , 2002, hep-th/0204189.

[25]  G. Moore,et al.  Strings in a time dependent orbifold , 2002, hep-th/0204168.

[26]  A. Sever,et al.  `Double-trace' deformations, boundary conditions and spacetime singularities , 2001, hep-th/0112264.

[27]  F. Pretorius,et al.  Gravitational collapse in 2¿1 dimensional AdS spacetime , 2000, gr-qc/0007008.

[28]  E. Witten,et al.  Ads/CFT correspondence and symmetry breaking , 1999, hep-th/9905104.

[29]  V. Balasubramanian,et al.  A Stress Tensor for Anti-de Sitter Gravity , 1999, hep-th/9902121.

[30]  M. Duff,et al.  Anti-de Sitter black holes in gauged N = 8 supergravity , 1999, hep-th/9901149.

[31]  P. Brady,et al.  Phases of massive scalar field collapse , 1997, gr-qc/9709014.

[32]  A. Starobinsky,et al.  Towards the theory of reheating after inflation , 1997, hep-ph/9704452.

[33]  C. Gundlach,et al.  Critical Phenomena in Gravitational Collapse , 1996, Living reviews in relativity.

[34]  M. Choptuik,et al.  Critical Behavior in Gravitational Collapse of a Yang-Mills Field. , 1996, Physical review letters.

[35]  S. Lang,et al.  Introduction to Diophantine Approximations , 1995 .

[36]  G. Veneziano,et al.  Phenomenological aspects of the pre-big-bang scenario in string cosmology , 1994, hep-th/0207130.

[37]  A. Starobinsky,et al.  Reheating after inflation. , 1994, Physical review letters.

[38]  M. Choptuik,et al.  Universality and scaling in gravitational collapse of a massless scalar field. , 1993, Physical review letters.

[39]  E. Witten,et al.  A closed, expanding universe in string theory , 1992, hep-th/9206078.

[40]  C. Kounnas,et al.  Cosmological String Backgrounds from Gauged WZW Models , 1992, hep-th/9205046.

[41]  Brandenberger,et al.  Particle production during out-of-equilibrium phase transitions. , 1990, Physical review. D, Particles and fields.

[42]  D. Freedman,et al.  Stability in Gauged Extended Supergravity , 1982 .

[43]  S. Coleman,et al.  Gravitational Effects on and of Vacuum Decay , 1980 .

[44]  H. R. Lewis,et al.  An Exact Quantum Theory of the Time‐Dependent Harmonic Oscillator and of a Charged Particle in a Time‐Dependent Electromagnetic Field , 1969 .

[45]  J. Lewis Classical and Quantum Systems with Time-Dependent Harmonic-Oscillator-Type Hamiltonians , 1967 .

[46]  N. Mclachlan Theory and Application of Mathieu Functions , 1965 .

[47]  P. Leach,et al.  The Ermakov equation: A commentary , 2008 .

[48]  S. Haro,et al.  Conformally Coupled Scalars, Instantons and Vacuum Instability in AdS , 2007 .

[49]  A. Dolgov,et al.  ON PARTICLE CREATION BY A TIME DEPENDENT SCALAR FIELD , 1989 .

[50]  Grozdanov,et al.  Quantum system driven by rapidly varying periodic perturbation. , 1988, Physical review. A, General physics.

[51]  P. L. Kapitsa,et al.  Dynamical Stability of a Pendulum when its Point of Suspension Vibrates , 1965 .

[52]  E. Mathieu Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique. , 1868 .