Photo-disintegration of the iron nucleus in fractured magnetite rocks with magnetostriction

There has been considerable interest in recent experiments on iron nuclear disintegrations observed when rocks containing such nuclei are crushed and fractured. The resulting nuclear transmutations are particularly strong for the case of magnetite rocks, i.e. loadstones. We argue that the fission of the iron nucleus is a consequence of photo-disintegration. The electro-strong coupling between electromagnetic fields and nuclear giant dipole resonances are central for producing observed nuclear reactions. The large electron energies produced during the fracture of piezomagnetic rocks are closely analogous to the previously discussed case of the fracture of piezoelectric rocks. In both cases electro-weak interactions can produce neutrons and neutrinos from energetic protons and electrons thus inducing nuclear transmutations. The electro-strong condensed matter coupling discussed herein represents new many body collective nuclear photo-disintegration effects.

[1]  H. Gove,et al.  Annual Review Of Nuclear And Particle Science , 1984 .

[2]  Liping Liu THEORY OF ELASTICITY , 2012 .

[3]  Giuseppe Lacidogna,et al.  Neutron emissions in brittle rocks during compression tests: Monotonic vs cyclic loading , 2010 .

[4]  Alberto Carpinteri,et al.  Geomechanical and Geochemical Evidence of Piezonuclear Fission Reactions in the Earth’s Crust , 2011 .

[5]  A. Carpinteri,et al.  An indirect evidence of piezonuclear fission reactions: Geomechanical and geochemical evolution in the Earth’s crust , 2012 .

[6]  F. Gasparini,et al.  Determination of the electric and magnetic form factors of the proton in the time-like region , 1994 .

[7]  K. Kase,et al.  Calculations of the Giant-Dipole-Resonance Photoneutrons Using a Coupled EGS4-Morse Code , 1997 .

[8]  A. Carpinteri,et al.  Piezonuclear Fission Reactions in Rocks: Evidences from Microchemical Analysis, Neutron Emission, and Geological Transformation , 2012, Rock Mechanics and Rock Engineering.

[9]  W. Thomas Über die Zahl der Dispersionselektronen, die einem stationären Zustande zugeordnet sind. (Vorläufige Mitteilung) , 1925, Naturwissenschaften.

[10]  K. Kase,et al.  Giant dipole resonance neutron yields produced by electrons as a function of target material and thickness. , 1996, Health physics.

[11]  Kurt Snover Giant Resonances in Excited Nuclei , 1986 .

[12]  A. Widom,et al.  Ultra low momentum neutron catalyzed nuclear reactions on metallic hydride surfaces , 2005 .

[13]  Giuseppe Lacidogna,et al.  Energy emissions from brittle fracture: Neutron measurements and geological evidences of piezonuclear reactions , 2011 .

[14]  S. Flügge,et al.  Practical Quantum Mechanics , 1976 .

[15]  John W. Hutchinson,et al.  Dynamic Fracture Mechanics , 1990 .

[16]  R. A. Silverman,et al.  Methods of Quantum Field Theory in Statistical Physics , 1964 .

[17]  S. Beer,et al.  Strength , 1875, Cybern. Hum. Knowing.

[18]  A. Widom,et al.  Theoretical Standard Model Rates of Proton to Neutron Conversions Near Metallic Hydride Surfaces , 2006, nucl-th/0608059.

[19]  Alberto Carpinteri,et al.  Compositional and Microchemical Evidence of Piezonuclear Fission Reactions in Rock Specimens Subjected to Compression Tests , 2011 .

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  J. Bahcall Electron Capture and Nuclear Matrix Elements of Be 7 , 1962 .

[22]  K. Haller Quantum Electrodynamics , 1979, Nature.

[23]  A. Migdal,et al.  Pion degrees of freedom in nuclear matter , 1990 .

[24]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[25]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[26]  Olivier Hubert,et al.  APPLICATION OF PIEZO-MAGNETISM FOR THE MEASUREMENT OF STRESS DURING AN IMPACT , 2006 .

[27]  J. Swain,et al.  Electrostrong Nuclear Disintegration in Condensed Matter , 2013, 1306.5165.

[28]  L. Maiani,et al.  Neutron production rates by inverse-beta decay in fully ionized plasmas , 2014, 1401.5288.

[29]  V. Grimalsky,et al.  Electromagnetic emission from magnetite plate cracking under seismic processes , 2008 .

[30]  Low energy neutron production by inverse β decay in metallic hydride surfaces , 2012, 1209.6501.

[31]  W. Kuhn Über die Gesamtstärke der von einem Zustande ausgehenden Absorptionslinien , 1925 .

[32]  A. Carpinteri,et al.  Electromagnetic and neutron emissions from brittle rocks failure: Experimental evidence and geological implications , 2012 .

[33]  Y. N. Srivastava,et al.  Neutron production from the fracture of piezoelectric rocks , 2011, 1109.4911.

[34]  F. Reiche,et al.  Über die Zahl der Dispersionselektronen, die einem stationären Zustand zugeordnet sind , 1925 .