Feature generation method by geometrical interpretation of fisher linear discriminant analysis (特集:システム制御のための画像応用技術)

This paper presents a new algorithm for feature generation, which is derived based on geometrical interpretation of the fisher linear discriminant analysis (FLDA). This algorithm (Simple-FLDA) is an approximation algorithm that calculates eigenvectors sequentially by an easy iterative calculation by expressing the maximization of variance between classes and minimization of variance in each class without the use of matrix calculation. We carry out computer simulations about recognition of wrist motion patterns by EMG measured from wrist and personal authentications that use face images to verify the effectiveness of this technique. The result was compared with the result of principal component analysis (Simple-PCA).