Conjunction on processes: Full abstraction via ready-tree semantics

A key problem in mixing operational (e.g. process-algebraic) and declarative (e.g. logical) styles of specification is how to deal with inconsistencies arising when composing processes under conjunction. This article introduces a conjunction operator on labelled transition systems capturing the basic intuition of 'a and b = false', and considers a naive preorder that demands that an inconsistent specification can only be refined by an inconsistent implementation. The main body of the article is concerned with characterizing the largest precongruence contained in the naive preorder. This characterization will be based on what we call ready-tree semantics, which is a variant of path-based possible-worlds semantics. We prove that the induced ready-tree preorder is compositional and fully abstract, and that the conjunction operator indeed reflects conjunction. The article's results provide a foundation for, and an important step towards a unified framework that allows one to freely mix operators from process algebras and linear-time temporal logics.

[1]  Joseph Sifakis,et al.  A Logic for the Description of Non-deterministic Programs and Their Properties , 1986, Inf. Control..

[2]  Rocco De Nicola,et al.  Testing Equivalences for Processes , 1984, Theor. Comput. Sci..

[3]  J. Bergstra,et al.  Handbook of Process Algebra , 2001 .

[4]  Rance Cleaveland,et al.  A Semantic Theory for Heterogeneous System Design , 2000, FSTTCS.

[5]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[6]  Grzegorz Rozenberg,et al.  Concurrency and Nets: Advances in Petri Nets , 1987 .

[7]  Sören Holmström,et al.  A refinement calculus for specifications in Hennessy-Milner logic with recursion , 1989, Formal Aspects of Computing.

[8]  Howard Bowman,et al.  Consistency of Partial Process Specifications , 1999, AMAST.

[9]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum I , 2001, Handbook of Process Algebra.

[10]  Rance Cleaveland,et al.  A Logical Process Calculus , 2002, EXPRESS.

[11]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[12]  Rocco De Nicola,et al.  Possible Worlds for Process Algebras , 1998, CONCUR.

[13]  M. Hennessy,et al.  Finite conjunctive nondeterminism , 1987 .

[14]  Rance Cleaveland,et al.  Equivalence and Preorder Checking for Finite-State Systems , 2001, Handbook of Process Algebra.

[15]  Howard Bowman,et al.  Disjunction of LOTOS Specifications , 1997, FORTE.

[16]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum II , 1993, CONCUR.

[17]  Kim G. Larsen,et al.  Graphical Versus Logical Specifications , 1990, Theor. Comput. Sci..

[18]  Martín Abadi,et al.  A Logical View of Composition , 1993, Theor. Comput. Sci..

[19]  Robert P. Kurshan,et al.  Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic Approach , 2014 .

[20]  Amir Pnueli,et al.  The temporal logic of programs , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[21]  Jan A. Bergstra,et al.  Ready-Trace Semantics for Concrete Process Algebra with the Priority Operator , 1987, Comput. J..

[22]  Kim G. Larsen,et al.  Modal Specifications , 1989, Automatic Verification Methods for Finite State Systems.

[23]  Joseph Sifakis,et al.  A logig for the description of behaviours and properties of concurrent systems , 1988, REX Workshop.

[24]  Leslie Lamport,et al.  The temporal logic of actions , 1994, TOPL.

[25]  Kim G. Larsen,et al.  A modal process logic , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[26]  Steven P. Miller Specifying the mode logic of a flight guidance system in CoRE and SCR , 1998, FMSP '98.

[27]  Mads Dam,et al.  Process-Algebraic Interpretations of Positive Linear and Relevant Logics , 1994, J. Log. Comput..

[28]  C. A. R. Hoare,et al.  A Theory of Communicating Sequential Processes , 1984, JACM.

[29]  Kim G. Larsen,et al.  A Constraint Oriented Proof Methodology Based on Modal Transition Systems , 1994, TACAS.