Gossiping personalized queries

This paper presents P3Q, a fully decentralized gossip-based protocol to personalize query processing in social tagging systems. P3Q dynamically associates each user with social acquaintances sharing similar tagging behaviours. Queries are gossiped among such acquaintances, computed on the fly in a collaborative, yet partitioned manner, and results are iteratively refined and returned to the querier. Analytical and experimental evaluations convey the scalability of P3Q for top-k query processing. More specifically, we show that on a 10,000-user delicious trace, with little storage at each user, the queries are accurately computed within reasonable time and bandwidth consumption. We also report on the inherent ability of P3Q to cope with users updating profiles and departing.

[1]  Krishna P. Gummadi,et al.  Exploiting Social Networks for Internet Search , 2006, HotNets.

[2]  Richard P. Martin,et al.  PlanetP: using gossiping to build content addressable peer-to-peer information sharing communities , 2003, High Performance Distributed Computing, 2003. Proceedings. 12th IEEE International Symposium on.

[3]  Susan T. Dumais,et al.  Characterizing the value of personalizing search , 2007, SIGIR.

[4]  Susan Gauch,et al.  Personalizing Search Based on User Search Histories , 2004 .

[5]  Maria Leonardi Ian H. Witten - Alistair Moffat - Timothy C. Bell, Managing gigabytes: compressing and indexing documents and images , 2012 .

[6]  Laks V. S. Lakshmanan,et al.  Efficient network aware search in collaborative tagging sites , 2008, Proc. VLDB Endow..

[7]  Masatoshi Yoshikawa,et al.  Adaptive web search based on user profile constructed without any effort from users , 2004, WWW '04.

[8]  Paul-Alexandru Chirita,et al.  Personalized query expansion for the web , 2007, SIGIR.

[9]  Christos Doulkeridis,et al.  On efficient top-k query processing in highly distributed environments , 2008, SIGMOD Conference.

[10]  Burton H. Bloom,et al.  Space/time trade-offs in hash coding with allowable errors , 1970, CACM.

[11]  Ronald Fagin,et al.  Combining fuzzy information: an overview , 2002, SGMD.

[12]  Gerhard Weikum,et al.  Efficient top-k querying over social-tagging networks , 2008, SIGIR '08.

[13]  Cong Yu,et al.  Leveraging Tagging to Model User Interests in del.icio.us , 2008, AAAI Spring Symposium: Social Information Processing.

[14]  Anne-Marie Kermarrec,et al.  Toward personalized peer-to-peer top-k processing , 2009, SNS '09.

[15]  Gerhard Weikum,et al.  Peer-to-Peer Information Search: Semantic, Social, or Spiritual? , 2007, IEEE Data Eng. Bull..

[16]  Steve Lawrence,et al.  Context in Web Search , 2000, IEEE Data Eng. Bull..

[17]  Anne-Marie Kermarrec,et al.  Gossip-based peer sampling , 2007, TOCS.

[18]  Anne-Marie Kermarrec,et al.  Epidemic information dissemination in distributed systems , 2004, Computer.

[19]  Ian H. Witten,et al.  Managing gigabytes (2nd ed.): compressing and indexing documents and images , 1999 .

[20]  Hinrich Schütze,et al.  Personalized search , 2002, CACM.

[21]  Krishna P. Gummadi,et al.  Measurement and analysis of online social networks , 2007, IMC '07.

[22]  Márk Jelasity,et al.  An approach to massively distributed aggregate computing on peer-to-peer networks , 2004, 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing, 2004. Proceedings..

[23]  Fabio Crestani,et al.  Tag data and personalized information retrieval , 2008, SSM '08.

[24]  Maarten van Steen,et al.  Epidemic-Style Management of Semantic Overlays for Content-Based Searching , 2005, Euro-Par.

[25]  Gerhard Weikum,et al.  MINERVA: Collaborative P2P Search , 2005, VLDB.

[26]  Christoph Meinel,et al.  Web Search Personalization Via Social Bookmarking and Tagging , 2007, ISWC/ASWC.

[27]  Ian H. Witten,et al.  Managing Gigabytes: Compressing and Indexing Documents and Images , 1999 .

[28]  Gerhard Weikum,et al.  KLEE: A Framework for Distributed Top-k Query Algorithms , 2005, VLDB.