Polysulfurated pyrene-cored dendrimers: luminescent and electrochromic properties.

We have synthesized a novel class of dendrimers, consisting of a polysulfurated pyrene core with appended poly(thiophenylene) dendrons (PyG0, PyG1, and PyG2, see Scheme 1), which exhibit remarkable photophysical and redox properties. In dichloromethane or cyclohexane solution they show a strong, dendron-localized absorption band with a maximum at around 260 nm and a band in the visible region with a maximum at 435 nm, which can be assigned to the pyrene core strongly perturbed by the four sulfur substituents. The dendrimers exhibit a strong (Phi=0.6), short-lived (tau=2.5 ns) core-localized fluorescence band with maximum at approximately 460 nm in cyclohexane solution at 293 K. A strong fluorescence is also observed in dichloromethane solution at 293 K, in dichloromethane/chloroform rigid matrix at 77 K, and in the solid state (powder) at room temperature. The dendrimers undergo reversible chemical and electrochemical one-electron oxidation with formation of a strongly colored deep blue radical cation. A second, reversible one-electron oxidation is observed at more positive potential values. The photophysical and redox properties of the three dendrimers are finely tuned by the length of their branches. The strong blue fluorescence and the yellow to deep blue color change upon reversible one-electron oxidation can be exploited for optoelectronic devices.

[1]  J. F. Stoddart,et al.  Ferrocene-containing carbohydrate dendrimers. , 2002, Chemistry.

[2]  D. Astruc,et al.  Dendritic catalysis: Major concepts and recent progress , 2006 .

[3]  T. Goodson Optical excitations in organic dendrimers investigated by time-resolved and nonlinear optical spectroscopy. , 2005, Accounts of chemical research.

[4]  Jean M. J. Fréchet,et al.  Effect of Core Structure on Photophysical and Hydrodynamic Properties of Porphyrin Dendrimers , 2000 .

[5]  A. Pinchart,et al.  Efficient formation of aromatic thiols from thiomethylated precursors , 1999 .

[6]  T. Mutai,et al.  Material design for piezochromic luminescence: hydrogen-bond-directed assemblies of a pyrene derivative. , 2007, Journal of the American Chemical Society.

[7]  A. van Dorsselaer,et al.  A mixed-bridging ligand nonanuclear Ru(II) dendrimer containing a tris- chelating core. Synthesis and redox properties. , 2004, Chemical communications.

[8]  H. Choy,et al.  Selective fluorescent chemosensor for the bacterial alarmone (p)ppGpp. , 2008, Journal of the American Chemical Society.

[9]  M. Ballauff,et al.  Dendrimers in solution: insight from theory and simulation. , 2004, Angewandte Chemie.

[10]  V. Balzani,et al.  Photoswitchable dendritic hosts: a dendrimer with peripheral azobenzene groups. , 2007, Journal of the American Chemical Society.

[11]  Heinrich Vollmann,et al.  Beiträge zur Kenntnis des Pyrens und seiner Derivate , 1937 .

[12]  Where Organometallics and Dendrimers Merge: The Incorporation of Organometallic Species into Dendritic Molecules , 2004 .

[13]  M. Gingras,et al.  Polysulfurated branched molecules containing functionalized m-phenylene sulfides , 1998 .

[14]  D. Astruc,et al.  Ferrocenyl-terminated Dendrimers: Design for Applications in Molecular Electronics, Molecular Recognition and Catalysis , 2008 .

[15]  S. Mazères,et al.  Changes of the Membrane Lipid Organization Characterized by Means of a New Cholesterol-Pyrene Probe , 2007, Biophysical journal.

[16]  H. Inokuchi,et al.  Photoelectric Emission and Electrical Conductivity of the Cesium Complex with Pyrene Derivatives , 1965 .

[17]  Giacomo Bergamini,et al.  Luminescence as a tool to investigate dendrimer properties , 2005 .

[18]  Daoben Zhu,et al.  Novel butterfly pyrene-based organic semiconductors for field effect transistors. , 2006, Chemical communications.

[19]  E. W. Meijer,et al.  Dendrimer-based transient supramolecular networks. , 2005, Journal of the American Chemical Society.

[20]  J. Reymond,et al.  Peptide dendrimers as artificial enzymes, receptors, and drug-delivery agents. , 2006, Accounts of chemical research.

[21]  J. F. Stoddart,et al.  Complete charge pooling is prevented in viologen-based dendrimers by self-protection. , 2004, Chemistry.

[22]  C. Gorman,et al.  Attenuating electron-transfer rates via dendrimer encapsulation: the case of metal tris(bipyridine) core dendrimers. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[23]  B. Baytekin,et al.  Mass spectrometry as a tool in dendrimer chemistry : from self-assembling dendrimers to dendrimer gas-phase host-guest chemistry , 2006 .

[24]  E. W. Meijer,et al.  Host-Guest Chemistry of Dendritic Molecules , 2000 .

[25]  A. Mishra,et al.  Photophysical properties of Newkome-type dendrimers in aqueous medium , 2007, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[26]  F. Vögtle,et al.  Oligothia Dendrimers for the Formation of Gold Nanoparticles , 2004 .

[27]  Jennifer C. Smith,et al.  Iron−Sulfur Core Dendrimers Display Dramatically Different Electrochemical Behavior in Films Compared to Solution , 2000 .

[28]  V. Balzani,et al.  A cyclam core dendrimer containing dansyl and oligoethylene glycol chains in the branches: protonation and metal coordination. , 2006, Chemistry.

[29]  Andreas M. Nyström,et al.  Porphyrin-Cored 2,2-Bis(methylol)propionic Acid Dendrimers , 2004 .

[30]  E. W. Meijer,et al.  Highly fluorescent crystalline and liquid crystalline columnar phases of pyrene-based structures. , 2006, The journal of physical chemistry. B.

[31]  G. Heywang,et al.  Radical Cation Salts of 1,3,6,8‐Tetrakis(methylthio)‐pyrene—New Easily Accessible Compounds with High Electrical Conductivity and Excellent Stability , 1991 .

[32]  Chuanzheng Zhou,et al.  Modulation of pyrene fluorescence in DNA probes depends upon the nature of the conformationally restricted nucleotide. , 2008, The Journal of organic chemistry.

[33]  M. Ballauff,et al.  Dendrimere in Lösung – Erkenntnisse aus Theorie und Simulation , 2004 .

[34]  W. Dehaen,et al.  The Photo Physical Properties of Dendrimers Containing 1,4‐Dioxo‐3,6‐Diphenylpyrrolo[3,4‐c]pyrrole (DPP) as a Core , 2005 .

[35]  Jiasheng Wu,et al.  Calix[4]arene-based, Hg2+ -induced intramolecular fluorescence resonance energy transfer chemosensor. , 2007, The Journal of organic chemistry.

[36]  A. Caminade,et al.  Nanomaterials based on phosphorus dendrimers. , 2004, Accounts of chemical research.

[37]  J. N. Moorthy,et al.  Steric inhibition of pi-stacking: 1,3,6,8-tetraarylpyrenes as efficient blue emitters in organic light emitting diodes (OLEDs). , 2007, Organic letters.

[38]  A. Bond,et al.  Electrochemical studies of porphyrin-appended dendrimers. , 2006, Physical chemistry chemical physics : PCCP.

[39]  J. Hofkens,et al.  Energy dissipation in multichromophoric single dendrimers. , 2005, Accounts of chemical research.

[40]  Patrik Storm,et al.  Lateral organization in Acholeplasma laidlawii lipid bilayer models containing endogenous pyrene probes. , 2003, European journal of biochemistry.

[41]  Sun Young Park,et al.  FRET-derived ratiometric fluorescence sensor for Cu2+ , 2008 .

[42]  Chihaya Adachi,et al.  Unusual photoluminescence characteristics of tetraphenylpyrene (TPPy) in various aggregated morphologies , 2006 .

[43]  K. Müllen,et al.  Pyrene as chromophore and electrophore: encapsulation in a rigid polyphenylene shell. , 2006, Chemistry.

[44]  J. Reek,et al.  Synthesis of carbosilane dendritic wedges and their use for the construction of dendritic receptors. , 2006, Organic & biomolecular chemistry.

[45]  D. Astruc,et al.  Dendritic catalysts and dendrimers in catalysis. , 2001, Chemical reviews.

[46]  S. Roth,et al.  New radical cation salts of substituted pyrenes , 1991 .

[47]  Jean M. J. Fréchet,et al.  Dendrimers and other dendritic polymers , 2001 .

[48]  P. Basu,et al.  Design, Syntheses, and Characterization of a Sterically Encumbered Dioxo Molybdenum (VI) Core. , 2007, Inorganica chimica acta.

[49]  A. Kaifer,et al.  Dendrimers as guests in molecular recognition phenomena. , 2004, Chemical communications.

[50]  T. Goodson,et al.  Exciton Trapping in an Organic Dendrimer Possessing No Energy Gradient , 2008 .

[51]  Deqing Zhang,et al.  Highly selective ratiometric fluorescence determination of Ag+ based on a molecular motif with one pyrene and two adenine moieties. , 2008, Organic letters.

[52]  R. Al‐Kaysi,et al.  Energy and charge transfer dynamics in fully decorated benzyl ether dendrimers and their disubstituted analogues. , 2006, The journal of physical chemistry. B.

[53]  M. Chai,et al.  Encapsulating fluorescein using adipic acid self-assembly on the surface of PPI-3 dendrimer. , 2007, Chemical communications.

[54]  M. Sienkowska,et al.  Photoconductivity of liquid crystalline derivatives of pyrene and carbazole , 2007 .

[55]  V. Balzani,et al.  A photophysical study of terphenyl core oligosulfonimide dendrimers exhibiting high steady-state anisotropy. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[56]  Richard M Crooks,et al.  Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. , 2005, The journal of physical chemistry. B.

[57]  M. Yamashita,,et al.  Evaluation of energy transfer in perylene-cored anthracene dendrimers. , 2006, Chemical communications.

[58]  Gerhard Heywang,et al.  Radikalkationensalze von 1,3,6,8‐Tetrakis(methylthio)pyren, neue, leicht zugängliche Verbindungen mit hoher elektrischer Leitfähigkeit und hervorragender Stabilität , 1991 .

[59]  T. Aida,et al.  Construction of segregated arrays of multiple donor and acceptor units using a dendritic scaffold: remarkable dendrimer effects on photoinduced charge separation. , 2006, Journal of the American Chemical Society.

[60]  Tiechao Li,et al.  Synthesis and Characterization of Functionalized Analogs of 1,3,6,8-Tetrakis(methylsulfanyl)pyrene and Their Electron-Conducting Radical-Cation Salts , 1994 .