Atomic resolution structure–property relation in highly anisotropic granular FePt-C films with near-Stoner-Wohlfarth behaviour

Chemically ordered and highly textured L10 FePt-C granular films are potential media for future heat-assisted magnetic recording. Vibrating sample magnetometry of such films in fields up to 14 T reveals a perpendicular coercivity of up to μ0HC=4.92 T and an anisotropy field of μ0HA=9.2 T, which translates to a (uni-axial) anisotropy constant as high as KU=5.3 MJ/m3. An analysis of the remanent magnetization and demagnetization curves shows that the spatially separated FePt nanoparticles act as a Stoner-Wohlfarth ensemble of uni-axial nanomagnets with negligible dipolar inter-particle coupling. The magnetic texture spread of 23° as determined from an analysis of the hard axis magnetization curve is found to be clearly larger than the structural texture width of roughly 3°. Aberration corrected high-resolution transmission electron microscopy reveals that the latter is due to the remaining roughness of the seed layer that causes the particle growth to nucleate at step edges of this layer.

[1]  S. Pisana,et al.  L10 FePtX–Y media for heat‐assisted magnetic recording , 2013 .

[2]  S. Pisana,et al.  Effects of grain microstructure on magnetic properties in FePtAg-C media for heat assisted magnetic recording , 2013 .

[3]  G. Chow,et al.  Control of Microstructure and Magnetic Properties of FePt Films With TiN Intermediate Layer , 2013, IEEE Transactions on Magnetics.

[4]  K. Hono,et al.  L1 $_{0}$-Ordered FePt-Based Perpendicular Magnetic Recording Media for Heat-Assisted Magnetic Recording , 2013, IEEE Transactions on Magnetics.

[5]  Chubing Peng,et al.  HAMR Areal Density Demonstration of 1+ Tbpsi on Spinstand , 2013, IEEE Transactions on Magnetics.

[6]  Xiaobin Wang,et al.  HAMR Recording Limitations and Extendibility , 2013, IEEE Transactions on Magnetics.

[7]  L. Schultz,et al.  Magnetically and thermally induced switching processes in hard magnets , 2012 .

[8]  S. Pisana,et al.  Ultra-high coercivity small-grain FePt media for thermally assisted recording (invited) , 2012 .

[9]  Jingsheng Chen,et al.  Well-isolated L10 FePt–SiNx–C nanocomposite films with large coercivity and small grain size , 2012 .

[10]  C. Kisielowski,et al.  Understanding the metal-carbon interface in FePt catalyzed carbon nanotubes. , 2011, Physical review letters.

[11]  L. Schultz,et al.  The temperature dependent anisotropy constants of epitaxially grown PrCo5+x , 2010 .

[12]  K. Hono,et al.  L10-ordered high coercivity (FePt)Ag–C granular thin films for perpendicular recording , 2010 .

[13]  L. Schultz,et al.  Modeling of Intergrain Exchange Coupling for Quantitative Predictions of $\delta m$ Plots , 2010, IEEE Transactions on Magnetics.

[14]  D. Givord,et al.  Revisiting magnetization processes in granular hard magnetic materials , 2009 .

[15]  M. Fatih Erden,et al.  Heat Assisted Magnetic Recording , 2008, Proceedings of the IEEE.

[16]  M. Farle,et al.  Layer resolved structural relaxation at the surface of magnetic FePt icosahedral nanoparticles. , 2008, Physical review letters.

[17]  Z. L. Wang,et al.  Size‐Dependent Chemical and Magnetic Ordering in L10‐FePt Nanoparticles , 2006 .

[18]  Michael F. Toney,et al.  On the relationship of magnetocrystalline anisotropy and stoichiometry in epitaxial L10 CoPt (001) and FePt (001) thin films , 2005 .

[19]  E. Wassermann,et al.  Magnetic properties of FePt nanoparticles , 2003 .

[20]  B. Shen,et al.  Investigation on intergrain exchange coupling of nanocrystalline permanent magnets by Henkel plot , 2003 .

[21]  Bernd Rellinghaus,et al.  Gas-phase preparation of L10 ordered FePt nanoparticles , 2003 .

[22]  D. Weller,et al.  Determination of switching field distributions for perpendicular recording media , 2003 .

[23]  J. Dubowik Erratum: Shape anisotropy of magnetic heterostructures [Phys. Rev. B 54 , 1088 (1996)] , 2000 .

[24]  M. Porto,et al.  Henkel plots of single-domain ferromagnetic particles , 2000 .

[25]  Margaret Evans Best,et al.  High K/sub u/ materials approach to 100 Gbits/in/sup 2/ , 2000 .

[26]  K. O'Grady,et al.  The limits to magnetic recording — media considerations , 1999 .

[27]  J. K. Howard,et al.  Magnetic measurement of interaction effects in CoNiCr and CoPtCr thin film media , 1991 .

[28]  U. Netzelmann Ferromagnetic resonance of particulate magnetic recording tapes , 1990 .

[29]  O. Henkel Remanenzverhalten und Wechselwirkungen in hartmagnetischen Teilchenkollektiven , 1964, December 1.

[30]  E. Wohlfarth Relations between Different Modes of Acquisition of the Remanent Magnetization of Ferromagnetic Particles , 1958 .