Atomic resolution structure–property relation in highly anisotropic granular FePt-C films with near-Stoner-Wohlfarth behaviour
暂无分享,去创建一个
S. Pisana | L. Schultz | D. Weller | O. Mosendz | V. Neu | B. Rellinghaus | Gregory A. Parker | S. Wicht
[1] S. Pisana,et al. L10 FePtX–Y media for heat‐assisted magnetic recording , 2013 .
[2] S. Pisana,et al. Effects of grain microstructure on magnetic properties in FePtAg-C media for heat assisted magnetic recording , 2013 .
[3] G. Chow,et al. Control of Microstructure and Magnetic Properties of FePt Films With TiN Intermediate Layer , 2013, IEEE Transactions on Magnetics.
[4] K. Hono,et al. L1 $_{0}$-Ordered FePt-Based Perpendicular Magnetic Recording Media for Heat-Assisted Magnetic Recording , 2013, IEEE Transactions on Magnetics.
[5] Chubing Peng,et al. HAMR Areal Density Demonstration of 1+ Tbpsi on Spinstand , 2013, IEEE Transactions on Magnetics.
[6] Xiaobin Wang,et al. HAMR Recording Limitations and Extendibility , 2013, IEEE Transactions on Magnetics.
[7] L. Schultz,et al. Magnetically and thermally induced switching processes in hard magnets , 2012 .
[8] S. Pisana,et al. Ultra-high coercivity small-grain FePt media for thermally assisted recording (invited) , 2012 .
[9] Jingsheng Chen,et al. Well-isolated L10 FePt–SiNx–C nanocomposite films with large coercivity and small grain size , 2012 .
[10] C. Kisielowski,et al. Understanding the metal-carbon interface in FePt catalyzed carbon nanotubes. , 2011, Physical review letters.
[11] L. Schultz,et al. The temperature dependent anisotropy constants of epitaxially grown PrCo5+x , 2010 .
[12] K. Hono,et al. L10-ordered high coercivity (FePt)Ag–C granular thin films for perpendicular recording , 2010 .
[13] L. Schultz,et al. Modeling of Intergrain Exchange Coupling for Quantitative Predictions of $\delta m$ Plots , 2010, IEEE Transactions on Magnetics.
[14] D. Givord,et al. Revisiting magnetization processes in granular hard magnetic materials , 2009 .
[15] M. Fatih Erden,et al. Heat Assisted Magnetic Recording , 2008, Proceedings of the IEEE.
[16] M. Farle,et al. Layer resolved structural relaxation at the surface of magnetic FePt icosahedral nanoparticles. , 2008, Physical review letters.
[17] Z. L. Wang,et al. Size‐Dependent Chemical and Magnetic Ordering in L10‐FePt Nanoparticles , 2006 .
[18] Michael F. Toney,et al. On the relationship of magnetocrystalline anisotropy and stoichiometry in epitaxial L10 CoPt (001) and FePt (001) thin films , 2005 .
[19] E. Wassermann,et al. Magnetic properties of FePt nanoparticles , 2003 .
[20] B. Shen,et al. Investigation on intergrain exchange coupling of nanocrystalline permanent magnets by Henkel plot , 2003 .
[21] Bernd Rellinghaus,et al. Gas-phase preparation of L10 ordered FePt nanoparticles , 2003 .
[22] D. Weller,et al. Determination of switching field distributions for perpendicular recording media , 2003 .
[23] J. Dubowik. Erratum: Shape anisotropy of magnetic heterostructures [Phys. Rev. B 54 , 1088 (1996)] , 2000 .
[24] M. Porto,et al. Henkel plots of single-domain ferromagnetic particles , 2000 .
[25] Margaret Evans Best,et al. High K/sub u/ materials approach to 100 Gbits/in/sup 2/ , 2000 .
[26] K. O'Grady,et al. The limits to magnetic recording — media considerations , 1999 .
[27] J. K. Howard,et al. Magnetic measurement of interaction effects in CoNiCr and CoPtCr thin film media , 1991 .
[28] U. Netzelmann. Ferromagnetic resonance of particulate magnetic recording tapes , 1990 .
[29] O. Henkel. Remanenzverhalten und Wechselwirkungen in hartmagnetischen Teilchenkollektiven , 1964, December 1.
[30] E. Wohlfarth. Relations between Different Modes of Acquisition of the Remanent Magnetization of Ferromagnetic Particles , 1958 .