A high dynamic range optical detector for measuring single photons and bright light.

Detecting light is fundamental to all optical experiments and applications. At the single photon level, the quantized nature of light requires specialised detectors, which typically saturate when more than one photon is incident. Here, we report on a massively-multiplexed single-photon detector, which exploits the saturation regime of a single click detector to exhibit a dynamic range of 123 dB, enabling measurement from optical energies as low as 10- 7 photons per pulse to ∼ 2.5 × 105photons per pulse. This allows us to calibrate a single photon detector directly to a power meter, as well as characterize the nonclassical features of a variety of quantum states.

[1]  Paul,et al.  Photon chopping: New way to measure the quantum state of light. , 1996, Physical review letters.

[2]  Hugo Zbinden,et al.  Room temperature photon number resolving detector for infared wavelengths. , 2010, Optics express.

[3]  E. Huntington,et al.  Photostatistics reconstruction via loop detector signatures. , 2009, Optics express.

[4]  Jan Perina,et al.  Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion , 2005 .

[5]  J. D. Franson,et al.  Photon-number resolution using time-multiplexed single-photon detectors , 2003, quant-ph/0305193.

[6]  S. Polyakov,et al.  Implementing a Multiplexed System of Detectors for Higher Photon Counting Rates , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  Verification of calibration methods for determining photon-counting detection efficiency using superconducting nano-wire single photon detectors. , 2017, Optics express.

[8]  K. Banaszek,et al.  Photon number resolving detection using time-multiplexing , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[9]  M. D. Shaw,et al.  A Near-Infrared 64-pixel Superconducting Nanowire Single Photon Detector Array with Integrated Multiplexed Readout , 2015 .

[10]  友紀子 中川 SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.

[11]  W. Vogel,et al.  Complete nonclassicality test with a photon-number-resolving detector , 2012, 1207.6097.

[12]  Konrad Banaszek,et al.  Photon counting with a loop detector. , 2003, Optics letters.

[13]  Alexander V. Sergienko,et al.  Absolute detector quantum-efficiency measurements using correlated photons , 1995 .

[14]  Igor Jex,et al.  Quantum Walks with Dynamical Control: Graph Engineering, Initial State Preparation and State Transfer , 2016 .

[15]  Shigeki Takeuchi,et al.  Multiphoton detection using visible light photon counter , 1999 .

[16]  C Silberhorn,et al.  Incomplete Detection of Nonclassical Phase-Space Distributions. , 2017, Physical review letters.

[17]  T. Gerrits,et al.  Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[18]  M. Ježek,et al.  High-efficiency photon-number-resolving multichannel detector , 2008 .

[19]  A. Migdall,et al.  Reduced deadtime and higher rate photon-counting detection using a multiplexed detector array , 2006, quant-ph/0601102.

[20]  Photon-number resolving and distribution verification using a multichannel superconducting nanowire single-photon detection system , 2014 .

[21]  Andrea Fiore,et al.  Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths , 2008 .

[22]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[23]  Andrew G. Glen,et al.  APPL , 2001 .

[24]  Christine Silberhorn,et al.  Fiber-assisted detection with photon number resolution. , 2003, Optics letters.

[25]  Marco Barbieri,et al.  Direct observation of sub-binomial light , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[26]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[27]  G. S. Agarwal,et al.  True photocounting statistics of multiple on-off detectors , 2012, 1202.5106.

[28]  R. Ramos Multiple-photon number resolving detector using fibre ring and single-photon detector , 2007 .

[29]  D. Klyshko,et al.  Use of two-photon light for absolute calibration of photoelectric detectors , 1980 .

[30]  J. Rehacek,et al.  Multiple-photon resolving fiber-loop detector , 2003 .

[31]  Traceable calibration of a fibre-coupled superconducting nano-wire single photon detector using characterized synchrotron radiation , 2014 .

[32]  Zach DeVito,et al.  Opt , 2017 .

[33]  G. Agarwal,et al.  Sub-binomial light. , 2012, Physical review letters.

[34]  S. Polyakov,et al.  Scalable multiplexed detector system for high-rate telecom-band single-photon detection. , 2009, The Review of scientific instruments.

[35]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, 1209.5774.

[36]  Carsten Rockstuhl,et al.  Sub-Poisson-binomial light , 2016, 1606.04826.

[37]  C. Silberhorn,et al.  Uncovering Quantum Correlations with Time-Multiplexed Click Detection. , 2015, Physical review letters.

[38]  J. Rehacek,et al.  Time-multiplexed measurements of nonclassical light at telecom wavelengths , 2014 .

[39]  W. Clements,et al.  Identification of nonclassical properties of light with multiplexing layouts. , 2017, Physical review. A.

[40]  R. Chrapkiewicz Photon counts statistics of squeezed and multimode thermal states of light on multiplexed on–off detectors , 2014, 1504.04959.