Photoanodic behavior of vapor-liquid-solid–grown, lightly doped, crystalline Si microwire arrays
暂无分享,去创建一个
Elizabeth A. Santori | N. Lewis | H. Atwater | B. Brunschwig | M. Kelzenberg | N. Strandwitz | M. Bierman | J. Maiolo
[1] Nathan S. Lewis,et al. High-performance Si microwire photovoltaics , 2011 .
[2] N. Lewis,et al. pH-Independent, 520 mV Open-Circuit Voltages of Si/Methyl Viologen 2+/+ Contacts Through Use of Radial n + p-Si Junction Microwire Array Photoelectrodes , 2011 .
[3] Nathan S Lewis,et al. Photoelectrochemical hydrogen evolution using Si microwire arrays. , 2011, Journal of the American Chemical Society.
[4] James R. McKone,et al. Solar water splitting cells. , 2010, Chemical reviews.
[5] T. Mayer,et al. Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth , 2010 .
[6] Joshua M. Spurgeon,et al. Flexible, Polymer‐Supported, Si Wire Array Photoelectrodes , 2010, Advanced materials.
[7] Nathan S. Lewis,et al. Si microwire-array solar cells , 2010 .
[8] Nathan S Lewis,et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.
[9] Peidong Yang,et al. Semiconductor nanowires for energy conversion , 2010, 2010 3rd International Nanoelectronics Conference (INEC).
[10] Nathan S. Lewis,et al. Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes , 2010, Science.
[11] N. Lewis,et al. 10 μm minority-carrier diffusion lengths in Si wires synthesized by Cu-catalyzed vapor-liquid-solid growth , 2009 .
[12] M. Brongersma,et al. Engineering light absorption in semiconductor nanowire devices. , 2009, Nature materials.
[13] Nathan S Lewis,et al. Secondary ion mass spectrometry of vapor-liquid-solid grown, Au-catalyzed, Si wires. , 2008, Nano letters.
[14] Nathan S Lewis,et al. Photovoltaic measurements in single-nanowire silicon solar cells. , 2008, Nano letters.
[15] Nathan S Lewis,et al. High aspect ratio silicon wire array photoelectrochemical cells. , 2007, Journal of the American Chemical Society.
[16] Nathan S. Lewis,et al. Growth of vertically aligned Si wire arrays over large areas (>1 cm^2) with Au and Cu catalysts , 2007 .
[17] Nathan S. Lewis,et al. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .
[18] Marius Grundmann,et al. Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section. , 2004, Physical review letters.
[19] N. Lewis,et al. Effects of Interfacial Energetics on the Effective Surface Recombination Velocity of Si/Liquid Contacts , 2002 .
[20] N. Lewis,et al. Kinetic studies of carrier transport and recombination at the n-silicon/methanol interface , 1986 .
[21] Ajeet Rohatgi,et al. Impurity effects in silicon for high efficiency solar cells , 1986 .
[22] J.R. Davis,et al. Impurities in silicon solar cells , 1980, IEEE Transactions on Electron Devices.
[23] Wolfgang W. Gärtner,et al. Depletion-Layer Photoeffects in Semiconductors , 1959 .
[24] S. Maldonado,et al. Analysis of the operation of thin nanowire photoelectrodes for solar energy conversion , 2012 .
[25] Antonio Luque,et al. Handbook of photovoltaic science and engineering , 2011 .
[26] Charles M. Lieber,et al. Single nanowire photovoltaics. , 2009, Chemical Society reviews.