N-soliton train and generalized complex Toda chain for the Manakov system

We analyze the dynamical behavior of the N-soliton train of the Manakov system and of the vector NLS equation in the adiabatic approximation. We prove that the dynamics of the N-soliton train in both cases are described by a generalized version of the complex Toda chain model. This fact can be used to predict the asymptotic regimes of the N-soliton train provided the initial soliton parameters are given.

[1]  N. Edagawa,et al.  Feasibility demonstration of 20 Gbit/s single channel soliton transmission over 11500 km using alternating-amplitude solitons , 1994 .

[2]  Yuri S. Kivshar,et al.  Optical Solitons: From Fibers to Photonic Crystals , 2003 .

[3]  Diana Anderson,et al.  Variational approach to nonlinear pulse propagation in optical fibers , 1983 .

[4]  C. Desem,et al.  Optical Solitons: Soliton–soliton interactions , 1992 .

[5]  Valery S Shchesnovich Interaction of N solitons in the massive Thirring model and optical gap system: the complex Toda chain model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Wabnitz,et al.  Perturbation theory for coupled nonlinear Schrödinger equations. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  Kaup,et al.  Asymptotic Behavior of N-Soliton Trains of the Nonlinear Schrödinger Equation. , 1996, Physical review letters.

[8]  Jianke Yang,et al.  Suppression of Manakov soliton interference in optical fibers. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Potsdam,et al.  Criterion and Regions of Stability for Quasi-Equidistant Soliton Trains. , 1997, solv-int/9708004.

[10]  J. M. Arnold,et al.  Complex Toda lattice and its application to the theory of interacting optical solitons , 1998 .

[11]  V. Gerdjikov,et al.  Adiabatic interaction of N ultrashort solitons: universality of the complex Toda chain model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Ivan M. Uzunov,et al.  On the description of N-soliton interaction in optical fibers , 1996 .

[13]  S. Novikov,et al.  Theory of Solitons: The Inverse Scattering Method , 1984 .

[14]  Morikazu Toda,et al.  Theory Of Nonlinear Lattices , 1981 .

[15]  V. Karpman,et al.  A perturbational approach to the two-soliton systems , 1981 .

[16]  V. Rothos,et al.  Dynamics of the Ablowitz-Ladik soliton train. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Rossen I. Ivanov,et al.  The complex Toda chains and the simple Lie algebras - solutions and large time asymptotics , 1997, solv-int/9909020.