Classification of OBDD size for monotone 2-CNFs

We introduce a new graph parameter called linear upper maximum induced matching width lu-mim width, denoted for a graph G by lu(G). We prove that the smallest size of the obdd for φ, the monotone 2-cnf corresponding to G, is sandwiched between 2 and n. The upper bound is based on a combinatorial statement that might be of an independent interest. We show that the bounds in terms of this parameter

[1]  Moshe Y. Vardi,et al.  Treewidth in Verification: Local vs. Global , 2005, LPAR.

[2]  Jan Arne Telle,et al.  Mim-Width II. The Feedback Vertex Set Problem , 2020, Algorithmica.

[3]  Adnan Darwiche,et al.  Decomposable negation normal form , 2001, JACM.

[4]  Jan Arne Telle,et al.  A width parameter useful for chordal and co-comparability graphs , 2017, Theor. Comput. Sci..

[5]  Jan Arne Telle,et al.  Solving #SAT and MAXSAT by Dynamic Programming , 2015, J. Artif. Intell. Res..

[6]  M. Vatshelle New Width Parameters of Graphs , 2012 .

[7]  Ingo Wegener,et al.  Branching Programs and Binary Decision Diagrams , 1987 .

[8]  Jan Arne Telle,et al.  Mim-Width I. Induced path problems , 2020, Discret. Appl. Math..

[9]  Stasys Jukna,et al.  Extremal Combinatorics - With Applications in Computer Science , 2001, Texts in Theoretical Computer Science. An EATCS Series.

[10]  Stefan Mengel,et al.  Lower bounds on the mim-width of some graph classes , 2016, Discret. Appl. Math..

[11]  Pierre Senellart,et al.  Connecting Knowledge Compilation Classes Width Parameters , 2018, Theory of Computing Systems.

[12]  Igor Razgon On the Read-Once Property of Branching Programs and CNFs of Bounded Treewidth , 2015, Algorithmica.

[13]  Jan Arne Telle,et al.  A width parameter useful for chordal and co-comparability graphs , 2016, Theor. Comput. Sci..

[14]  Jan Arne Telle,et al.  Mim-width III. Graph powers and generalized distance domination problems , 2019, Theor. Comput. Sci..

[15]  Igor Razgon On Oblivious Branching Programs with Bounded Repetition that Cannot Efficiently Compute CNFs of Bounded Treewidth , 2016, Theory of Computing Systems.