On the Number of Neighbors in Normal Tiling

The paper is devoted to the normal tiling whose tiles are uniformly bounded and general connected closed sets instead of being restricted to polytopes or convex sets. We estimate the number of neighbors of a tile in the normal tiling and develop various novel techniques to derive lower and upper bounds. The bounds for lattice tilings are shown to be optimal.

[1]  Hsiao-Dong Chiang,et al.  Neighboring Local Optimal Solutions and Its Applications , 2014 .

[2]  Sarit Buzaglo,et al.  Tilings by (0.5, n)-Crosses and Perfect Codes , 2013, SIAM J. Discret. Math..

[3]  Boris Solomyak,et al.  On the Characterization of Expansion Maps for Self-Affine Tilings , 2008, Discret. Comput. Geom..

[4]  The number “ 6 ” in Planar Tilings , 2009 .

[5]  Krzysztof Przeslawski,et al.  Keller's Conjecture on the Existence of Columns in Cube Tilings of R^n , 2008, 0809.1960.

[6]  Tohru Ogawa,et al.  Properties of Tilings by Convex Pentagons , 2006 .

[7]  C. Zong Minkowski's conjecture , 2006 .

[8]  Curtis T. McMullen,et al.  Minkowski’s Conjecture, Well-Rounded Lattices and Topological Dimension , 2005 .

[9]  P. Östergård,et al.  Resolving the Existence of Full-Rank Tilings of Binary Hamming Spaces , 2005, SIAM J. Discret. Math..

[10]  Terence Tao,et al.  Fuglede's conjecture is false in 5 and higher dimensions , 2003, math/0306134.

[11]  Mackey A Cube Tiling of Dimension Eight with No Facesharing , 2002 .

[12]  Cristopher Moore,et al.  Hard Tiling Problems with Simple Tiles , 2001, Discret. Comput. Geom..

[13]  L. Dalla,et al.  The Blocking Numbers of Convex Bodies , 2000, Discret. Comput. Geom..

[14]  M. Kolountzakis,et al.  Packing, Tiling, Orthogonality and Completeness , 1999, math/9904066.

[15]  István Talata,et al.  Exponential Lower Bound for the Translative Kissing Numbers of d -Dimensional Convex Bodies , 1998, Discret. Comput. Geom..

[16]  C. Zong,et al.  The Kissing Numbers of Convex Bodies — A Brief Survey , 1998 .

[17]  Boris Solomyak,et al.  Dynamics of self-similar tilings , 1997, Ergodic Theory and Dynamical Systems.

[18]  J. H. van Lint,et al.  Functions of one complex variable II , 1997 .

[19]  Jeffrey C. Lagarias,et al.  Keller’s cube-tiling conjecture is false in high dimensions , 1992 .

[20]  G. C. Shephard,et al.  Tilings and Patterns , 1990 .

[21]  Sándor Szabó A reduction of lattice tiling by translates of a cubical cluster , 1987, Discret. Comput. Geom..

[22]  R. Connelly Rigidity and energy , 1982 .

[23]  Branko Grünbaum,et al.  Tilings with congruent tiles , 1980 .

[24]  G. Naber Topological Methods in Euclidean Spaces , 1980 .

[25]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[26]  H. Cohn Minkowski's Conjectures on Critical Lattices in the Metric (∣ξ∣ p + ∣η∣ p ) 1/p , 1950 .

[27]  Georg Hajós,et al.  Über einfache und mehrfache Bedeckung desn-dimensionalen Raumes mit einem Würfelgitter , 1942 .

[28]  H. Minkowski,et al.  Diophantische Approximationen : eine Einführung in die Zahlentheorie , 1907 .