Partial Cauchy data for general second order elliptic operators in two dimensions

We consider the problem of determining the coefficients of a first-order perturbation of the Laplacian in two dimensions by measuring the corresponding Cauchy data on an arbitrary open subset of the boundary. From this information we obtain a coupled system of ∂z and ∂z which the coefficients satisfy. As a corollary we show that for a simply connected domain we can determine uniquely the coefficients up to the natural obstruction. Another consequence of our result is that the magnetic field and the electric potential are uniquely determined by measuring the partial Cauchy data associated to the magnetic Schrodinger equation measured on an arbitrary open subset of the boundary. of the boundary. We also show that the coefficients of any real vector field perturbation of the Laplacian, the convection terms, are uniquely determined by their partial Cauchy data.

[1]  A. Bukhgeǐm,et al.  Recovering a potential from Cauchy data in the two-dimensional case , 2008 .

[2]  Masahiro Yamamoto,et al.  Carleman estimates for parabolic equations and applications , 2009 .

[3]  Hitoshi Kitada,et al.  ASYMPTOTICALLY OUTGOING AND INCOMING SPACES AND QUANTUM SCATTERING , 2010 .

[4]  Gunther Uhlmann,et al.  Anisotropic inverse problems in two dimensions , 2003 .

[5]  G. Nemes Asymptotic Expansions of Integrals , 2004 .

[6]  Hermann Brunner,et al.  Numerical simulations of two-dimensional fractional subdiffusion problems , 2009 .

[7]  F. Sauvigny,et al.  Generalized Analytic Functions , 2012 .

[8]  Jin Cheng,et al.  Determination of Two Convection Coefficients from Dirichlet to Neumann Map in the Two-Dimensional Case , 2004, SIAM J. Math. Anal..

[9]  Shinichiroh Matsuo,et al.  Instanton approximation, periodic ASD connections, and mean dimension , 2009, 0909.1141.

[10]  Gunther Uhlmann,et al.  Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions , 1997 .

[11]  R. Temam Navier-Stokes Equations , 1977 .

[12]  Olli Lehto,et al.  Lectures on quasiconformal mappings , 1975 .

[13]  G. Uhlmann,et al.  The Calderón problem with partial data , 2004, math/0405486.

[14]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[15]  Robert P. Gilbert,et al.  Elliptic systems in the plane , 1976 .

[16]  Bernd Silbermann,et al.  Analysis of Toeplitz Operators , 1991 .

[17]  G. Uhlmann,et al.  Inverse Problems for the Pauli Hamiltonian in Two Dimensions , 2004 .

[18]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[19]  G. Uhlmann,et al.  RECOVERING A POTENTIAL FROM PARTIAL CAUCHY DATA , 2002 .

[20]  Seiji Nishioka Decomposable extensions of difference fields , 2010 .

[21]  C. Kenig,et al.  Determining a Magnetic Schrödinger Operator from Partial Cauchy Data , 2006, math/0601466.

[22]  E. Shamir,et al.  Regularization of mixed second-order elliptic problems , 1968 .

[23]  L. Hörmander Linear Partial Differential Operators , 1963 .

[24]  M. Salo Semiclassical Pseudodifferential Calculus and the Reconstruction of a Magnetic Field , 2006, math/0602290.

[25]  Hyeonbae Kang,et al.  Boundary Determination of Conductivities and Riemannian Metrics via Local Dirichlet-to-Neumann Operator , 2002, SIAM J. Math. Anal..

[26]  P. Loreti,et al.  Reachability problems for a class of integro-differential equations , 2010 .

[27]  MATTI LASSAS,et al.  Calderóns' Inverse Problem for Anisotropic Conductivity in the Plane , 2004 .

[28]  Masahiro Yamamoto,et al.  The Calderón problem with partial data in two dimensions , 2010 .

[29]  Determining nonsmooth first order terms from partial boundary measurements , 2006, math/0609133.

[30]  Robert V. Kohn,et al.  IDENTIFICATION OF AN UNKNOWN CONDUCTIVITY BY MEANS OF MEASUREMENTS AT THE BOUNDARY. , 1983 .

[31]  G. Uhlmann,et al.  Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field , 1995 .

[32]  M. Salo Inverse Problems for Nonsmooth First Order Perturbations of the Laplacian , 2004 .

[33]  J. Noguchi,et al.  A new unicity theorem and Erdös’ problem for polarized semi-abelian varieties , 2009, 0907.5066.

[34]  E. Somersalo,et al.  Uniqueness of identifying the convection term , 2001 .

[35]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[36]  G. Uhlmann,et al.  The Calderón problem with partial data , 2004 .

[37]  L. Tzou,et al.  Calderon inverse Problem with partial data on Riemann Surfaces , 2009, 0908.1417.

[38]  Hajime Fujita,et al.  Torus fibrations and localization of index II-Local index for acyclic compatible system - , 2009 .

[39]  John M. Lee,et al.  Determining anisotropic real-analytic conductivities by boundary measurements , 1989 .

[40]  An inverse boundary value problem for the schrödinger operator with vector potentials in two dimensions , 1993 .

[41]  M.,et al.  Recovering a Lamé Kernel in a viscoelastic equation by a single boundary measurement , 2009 .

[42]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .