Infant epidermal skin physiology: adaptation after birth

Background  Functional and structural skin adaptation is a dynamic process which starts immediately after birth in humans and in mammalian skin in general. This adjustment to the extrauterine dry environment is accomplished in the first year of postnatal life of humans.

[1]  P. Hackl,et al.  Effects of soap and detergents on skin surface pH, stratum corneum hydration and fat content in infants. , 1997, Dermatology.

[2]  M. Egawa,et al.  Comparison of the depth profiles of water and water‐binding substances in the stratum corneum determined in vivo by Raman spectroscopy between the cheek and volar forearm skin: effects of age, seasonal changes and artificial forced hydration , 2007, The British journal of dermatology.

[3]  Vera Rogiers,et al.  EEMCO Guidance for the Assessment of Transepidermal Water Loss in Cosmetic Sciences , 2001, Skin Pharmacology and Physiology.

[4]  L. Eckhart,et al.  Is the filaggrin-histidine-urocanic acid pathway essential for stratum corneum acidification? , 2010, The Journal of investigative dermatology.

[5]  S M Puhvel,et al.  Analysis of lipid composition of isolated human sebaceous gland homogenates after incubation with cutaneous bacteria. Thin-layer chromatography. , 1975, The Journal of investigative dermatology.

[6]  N. Kollias,et al.  Infant Skin Microstructure Assessed In Vivo Differs from Adult Skin in Organization and at the Cellular Level , 2010, Pediatric dermatology.

[7]  E. Gratton,et al.  NHE 1 Regulates the Stratum Corneum Permeability Barrier Homeostasis MICROENVIRONMENT ACIDIFICATION ASSESSED WITH FLUORESCENCE LIFETIME IMAGING * , 2002 .

[8]  J. Fluhr,et al.  Direct Comparison of Skin Physiology in Children and Adults with Bioengineering Methods , 2000, Pediatric dermatology.

[9]  M. Nagano,et al.  Relationship between NMF (lactate and potassium) content and the physical properties of the stratum corneum in healthy subjects. , 2004, The Journal of investigative dermatology.

[10]  S. Azen,et al.  Comparisons of eccrine sweat gland anatomy in genetic, chromosomal, and other diseases, and a suggested procedure for use of sweat gland measurements in differential diagnosis. , 1982, Teratology.

[11]  K A Holbrook,et al.  Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis. , 1974, The Journal of investigative dermatology.

[12]  V. Rogiers,et al.  Sustained serine proteases activity by prolonged increase in pH leads to degradation of lipid processing enzymes and profound alterations of barrier function and stratum corneum integrity. , 2005, The Journal of investigative dermatology.

[13]  P. Elias,et al.  Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity. , 2001, The Journal of investigative dermatology.

[14]  P. Elias,et al.  Stratum corneum acidification in neonatal skin: secretory phospholipase A2 and the sodium/hydrogen antiporter-1 acidify neonatal rat stratum corneum. , 2004, The Journal of investigative dermatology.

[15]  C. Harding,et al.  Filaggrin breakdown to water binding compounds during development of the rat stratum corneum is controlled by the water activity of the environment. , 1986, Developmental biology.

[16]  D. Thueson,et al.  The Roles of pH and Concentration in Lactic Acid‐induced Stimulation of Epidermal Turnover , 1998, Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al.].

[17]  E. Berardesca,et al.  Functional skin adaptation in infancy – almost complete but not fully competent , 2010, Experimental dermatology.

[18]  O. Braun-falco,et al.  Differences in the skin surface pH and bacterial microflora due to the long-term application of synthetic detergent preparations of pH 5.5 and pH 7.0. Results of a crossover trial in healthy volunteers. , 1990, Acta dermato-venereologica.

[19]  N. Kollias,et al.  Barrier function and water-holding and transport properties of infant stratum corneum are different from adult and continue to develop through the first year of life. , 2008, The Journal of investigative dermatology.

[20]  T. Agner,et al.  Guidelines for transepidermal water loss (TEWL) measurement , 1990, Contact dermatitis.

[21]  Enrico Gratton,et al.  NHE1 Regulates the Stratum Corneum Permeability Barrier Homeostasis , 2002, The Journal of Biological Chemistry.

[22]  N. Kollias,et al.  Infant skin physiology and development during the first years of life: a review of recent findings based on in vivo studies , 2011, International journal of cosmetic science.

[23]  Maxim E. Darvin,et al.  In vivo Raman spectroscopy detects increased epidermal antioxidative potential with topically applied carotenoids , 2008 .

[24]  J. G. Kirchner,et al.  Thin Layer Chromatography , 1963 .

[25]  U. Blume-Peytavi,et al.  Stratum Corneum Maturation , 2004, Skin Pharmacology and Physiology.

[26]  R. Wickett,et al.  Natural moisturizing factors (NMF) in the stratum corneum (SC). I. Effects of lipid extraction and soaking. , 2010, Journal of cosmetic science.

[27]  A V Rawlings,et al.  Measuring the effects of topical moisturizers on changes in stratum corneum thickness, water gradients and hydration in vivo , 2008, The British journal of dermatology.

[28]  W Ament,et al.  Lactate and Ammonia Concentration in Blood and Sweat During Incremental Cycle Ergometer Exercise , 1997, International journal of sports medicine.

[29]  H Szmacinski,et al.  Fluorescence lifetime imaging. , 1992, Analytical biochemistry.

[30]  Jürgen Lademann,et al.  In vivo distribution of carotenoids in different anatomical locations of human skin: comparative assessment with two different Raman spectroscopy methods , 2009, Experimental dermatology.

[31]  H. Tagami,et al.  Impairment of Skin Barrier Function is not Inherent in Atopic Dermatitis Patients: A Prospective Study Conducted in Newborns , 2006, Pediatric dermatology.

[32]  E. Gratton,et al.  Neonatal development of the stratum corneum pH gradient: localization and mechanisms leading to emergence of optimal barrier function. , 2003, The Journal of investigative dermatology.

[33]  G. Puppels,et al.  Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin. , 2003, Biophysical journal.

[34]  A. Kolpakova,et al.  [The skin barrier]. , 1972, Vestnik dermatologii i venerologii.

[35]  H. Korting,et al.  The pH of the Skin Surface and Its Impact on the Barrier Function , 2006, Skin Pharmacology and Physiology.

[36]  M. Visscher,et al.  Changes in Diapered and Nondiapered Infant Skin Over the First Month of Life , 2000, Pediatric dermatology.

[37]  N. Rutter,et al.  Water loss from the skin of term and preterm babies. , 1979, Archives of disease in childhood.

[38]  P. Elias,et al.  Transepidermal water loss reflects permeability barrier status: validation in human and rodent in vivo and ex vivo models , 2006, Experimental dermatology.

[39]  P. Hoeger,et al.  Skin Physiology of the Neonate and Young Infant: A Prospective Study of Functional Skin Parameters During Early Infancy , 2002, Pediatric dermatology.

[40]  L. Sirota,et al.  Skin Barrier Properties in Different Body Areas in Neonates , 2000, Pediatrics.

[41]  P. Matts,et al.  Stratum corneum moisturization at the molecular level: an update in relation to the dry skin cycle. , 2005, The Journal of investigative dermatology.

[42]  R. Warner,et al.  Electron probe analysis of human skin: element concentration profiles. , 1988, The Journal of investigative dermatology.

[43]  P. Elias,et al.  Antimicrobial activity of stratum corneum lipids from normal and essential fatty acid-deficient mice. , 1989, The Journal of investigative dermatology.

[44]  U. Blume-Peytavi,et al.  Stratum corneum maturation. A review of neonatal skin function. , 2004, Skin pharmacology and physiology.

[45]  A V Rawlings,et al.  Stratum corneum moisturization at the molecular level. , 1994, The Journal of investigative dermatology.

[46]  M. Kermici,et al.  Evidence for the existence of a self-regulated enzymatic process within the human stratum corneum -an unexpected role for urocanic acid. , 2000, The Journal of investigative dermatology.

[47]  S. Seidenari,et al.  Skin Barrier, Hydration, and pH of the Skin of Infants Under 2 Years of Age , 2001, Pediatric dermatology.

[48]  P. Elias,et al.  Stratum corneum pH: Formation and Function of the ‘Acid Mantle’ , 2002, Exogenous Dermatology.

[49]  E. Hey,et al.  The response of the sweat glands of the new‐born baby to thermal stimuli and to intradermal acetylcholine , 1969, The Journal of physiology.

[50]  H. Bruining,et al.  In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles. , 2001, The Journal of investigative dermatology.

[51]  N. Evans,et al.  Development of the epidermis in the newborn. , 1986, Biology of the neonate.

[52]  C. A. Teijgeler [Thin-layer chromatography]. , 1962, Pharmaceutisch weekblad.

[53]  A. Schönberger,et al.  Distribution of urocanic acid in human stratum corneum. , 1986, Photo-dermatology.

[54]  P. Elias,et al.  Secretory phospholipase A2 activity is required for permeability barrier homeostasis. , 1996, The Journal of investigative dermatology.

[55]  P. Dubus,et al.  Kallikrein 5 induces atopic dermatitis–like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome , 2009, The Journal of experimental medicine.

[56]  P. Elias,et al.  Functional consequences of a neutral pH in neonatal rat stratum corneum. , 2004, The Journal of investigative dermatology.