The Largest Eigenvalue of Rank One Deformation of Large Wigner Matrices

The purpose of this paper is to establish universality of the fluctuations of the largest eigenvalue for some non-necessarily Gaussian complex Deformed Wigner Ensembles. The real model is also considered. Our approach is close to the one used by A. Soshnikov (cf. [11]) in the investigations of classical real or complex Wigner Ensembles. It is based on the computation of moments of traces of high powers of the random matrices under consideration.

[1]  S. Geman A Limit Theorem for the Norm of Random Matrices , 1980 .

[2]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[3]  P. Glynn,et al.  Departures from Many Queues in Series , 1991 .

[4]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Fredholm Determinants, Differential Equations and Matrix Models , 2022 .

[5]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9211141.

[6]  Alexander Soshnikov,et al.  Central limit theorem for traces of large random symmetric matrices with independent matrix elements , 1998 .

[7]  A. Soshnikov,et al.  A refinement of Wigner's semicircle law in a neighborhood of the spectrum edge for random symmetric matrices , 1998 .

[8]  Z. Bai METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .

[9]  A. Soshnikov Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.

[10]  S. Péché,et al.  Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.

[11]  J. W. Silverstein,et al.  Eigenvalues of large sample covariance matrices of spiked population models , 2004, math/0408165.

[12]  S. Péché The largest eigenvalue of small rank perturbations of Hermitian random matrices , 2004, math/0411487.

[13]  D. Paul,et al.  Asymptotics of the leading sample eigenvalues for a spiked covariance model , 2004 .

[14]  Grandes déviations et fluctuations des valeurs propres maximales de matrices aléatoires , 2006 .

[15]  Michel Broniatowski,et al.  An estimation method for the Neyman chi-square divergence with application to test of hypotheses , 2006 .

[16]  Z. Bai,et al.  METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES, A REVIEW , 2008 .