Stochastic Offline Programming

We propose a framework which we call stochastic off-line programming (SOP). The idea is to embed the development of combinatorial algorithms in an off-line learning environment which helps the developer choose heuristic advisors that guide the search for satisfying or optimal solutions. In particular, we consider the case where the developer has several heuristic advisors available. Rather than selecting a single heuristics, we propose that one of the heuristics is chosen randomly whenever the heuristic guidance is sought. The task of SOP is to learn favorable instance-specific distributions of the heuristic advisors in order to boost the average-case performance of the resulting combinatorial algorithm.

[1]  Andrew W. Moore,et al.  Learning Evaluation Functions to Improve Optimization by Local Search , 2001, J. Mach. Learn. Res..

[2]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[3]  Nancy Paterson The Library , 1912, Leonardo.

[4]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[5]  Kevin Leyton-Brown,et al.  SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..

[6]  Yoav Shoham,et al.  Understanding Random SAT: Beyond the Clauses-to-Variables Ratio , 2004, CP.

[7]  Roberto Battiti,et al.  The Reactive Tabu Search , 1994, INFORMS J. Comput..

[8]  Egon Balas,et al.  A Dynamic Subgradient-Based Branch-and-Bound Procedure for Set Covering , 1992, Oper. Res..

[9]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[10]  Alex S. Fukunaga,et al.  Automated Discovery of Local Search Heuristics for Satisfiability Testing , 2008, Evolutionary Computation.

[11]  Roland Wunderling,et al.  Paralleler und objektorientierter Simplex-Algorithmus , 1996 .

[12]  Philippe Refalo,et al.  Impact-Based Search Strategies for Constraint Programming , 2004, CP.

[13]  George C. Runger,et al.  Using Experimental Design to Find Effective Parameter Settings for Heuristics , 2001, J. Heuristics.

[14]  Bart Selman,et al.  Algorithm portfolios , 2001, Artif. Intell..

[15]  Thomas Stützle,et al.  Automatic Algorithm Configuration Based on Local Search , 2007, AAAI.

[16]  Michael I. Jordan Why the logistic function? A tutorial discussion on probabilities and neural networks , 1995 .

[17]  Manuel Laguna,et al.  Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..