Morphologically Decoupled Structured Sparsity for Rotation-Invariant Hyperspectral Image Analysis

Hyperspectral imagery has emerged as a popular sensing modality for a variety of applications, and sparsity-based methods were shown to be very effective to deal with challenges coming from high dimensionality in most hyperspectral classification problems. In this paper, we challenge the conventional approach to hyperspectral classification that typically builds sparsity-based classifiers directly on spectral reflectance features or features derived directly from the data. We assert that hyperspectral image (HSI) processing can benefit very significantly by decoupling data into geometrically distinct components since the resulting decoupled components are much more suitable for sparse representation-based classifiers. Specifically, we apply morphological separation to decouple data into texture and cartoon-like components, which are sparsely represented using local discrete cosine bases and multiscale shearlets, respectively. In addition to providing a structured sparse representation, this approach allows us to build classifiers with invariance properties specific to each geometrically distinct component of the data. The experimental results using real-world HSI data sets demonstrate the efficacy of the proposed framework for classifying multichannel imagery under a variety of adverse conditions—in particular, small training sample size, additive noise, and rotational variabilities between training and test samples.

[1]  Glenn R. Easley,et al.  3D data denoising using combined sparse dictionaries , 2013 .

[2]  G. Shaw,et al.  Signal processing for hyperspectral image exploitation , 2002, IEEE Signal Process. Mag..

[3]  Yin Zhang,et al.  A Compressive Sensing and Unmixing Scheme for Hyperspectral Data Processing , 2012, IEEE Transactions on Image Processing.

[4]  Lorenzo Bruzzone,et al.  Kernel-based methods for hyperspectral image classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Trac D. Tran,et al.  Sparse Representation for Target Detection in Hyperspectral Imagery , 2011, IEEE Journal of Selected Topics in Signal Processing.

[6]  Wang-Q Lim,et al.  Sparse multidimensional representation using shearlets , 2005, SPIE Optics + Photonics.

[7]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[8]  Antonio J. Plaza,et al.  Superpixel-Based Active Learning and Online Feature Importance Learning for Hyperspectral Image Analysis , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[9]  Lei Zhang,et al.  Sparse representation or collaborative representation: Which helps face recognition? , 2011, 2011 International Conference on Computer Vision.

[10]  Michael Elad,et al.  Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .

[11]  Gitta Kutyniok,et al.  Microlocal Analysis of the Geometric Separation Problem , 2010, ArXiv.

[12]  James E. Fowler,et al.  Segmented Mixture-of-Gaussian Classification for Hyperspectral Image Analysis , 2014, IEEE Geoscience and Remote Sensing Letters.

[13]  Saurabh Prasad,et al.  Angular Discriminant Analysis for Hyperspectral Image Classification , 2015, IEEE Journal of Selected Topics in Signal Processing.

[14]  Demetrio Labate,et al.  Optimally Sparse Multidimensional Representation Using Shearlets , 2007, SIAM J. Math. Anal..

[15]  Hao Wu,et al.  Compressive data fusion for multi-sensor image analysis , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[16]  Gitta Kutyniok,et al.  Shearlets: Multiscale Analysis for Multivariate Data , 2012 .

[17]  Chao Lan,et al.  Exploring the natural discriminative information of sparse representation for feature extraction , 2010, 2010 3rd International Congress on Image and Signal Processing.

[18]  Ronald R. Coifman,et al.  A Framework for Discrete Integral Transformations I-The Pseudopolar Fourier Transform , 2008, SIAM J. Sci. Comput..

[19]  Demetrio Labate,et al.  Geometric Separation of Singularities Using Combined Multiscale Dictionaries , 2015 .

[20]  Thomas S. Huang,et al.  Image Super-Resolution Via Sparse Representation , 2010, IEEE Transactions on Image Processing.

[21]  Saurabh Prasad,et al.  Information Fusion in Kernel-Induced Spaces for Robust Subpixel Hyperspectral ATR , 2009, IEEE Geoscience and Remote Sensing Letters.

[22]  Zihan Zhou,et al.  Towards a practical face recognition system: Robust registration and illumination by sparse representation , 2009, CVPR.

[23]  D. Donoho,et al.  Redundant Multiscale Transforms and Their Application for Morphological Component Separation , 2004 .

[24]  John F. Mustard,et al.  Spectral unmixing , 2002, IEEE Signal Process. Mag..

[25]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[26]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Melba M. Crawford,et al.  Manifold-Learning-Based Feature Extraction for Classification of Hyperspectral Data: A Review of Advances in Manifold Learning , 2014, IEEE Signal Processing Magazine.

[28]  Ashok Veeraraghavan,et al.  Image classification in natural scenes: Are a few selective spectral channels sufficient? , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[29]  Gustavo Camps-Valls,et al.  Multisource Composite Kernels for Urban-Image Classification , 2010, IEEE Geoscience and Remote Sensing Letters.

[30]  Edoardo Pasolli,et al.  Ensemble Multiple Kernel Active Learning For Classification of Multisource Remote Sensing Data , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[31]  David A. Landgrebe,et al.  Hyperspectral image data analysis , 2002, IEEE Signal Process. Mag..

[32]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[33]  Rama Chellappa,et al.  Joint Sparse Representation for Robust Multimodal Biometrics Recognition , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Jia Wen,et al.  Improved morphological component analysis for interference hyperspectral image decomposition , 2015, Comput. Electr. Eng..

[35]  James E. Fowler,et al.  Information Fusion in the Redundant-Wavelet-Transform Domain for Noise-Robust Hyperspectral Classification , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Saurabh Prasad,et al.  Decision Fusion With Confidence-Based Weight Assignment for Hyperspectral Target Recognition , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Eero P. Simoncelli,et al.  Optimal Denoising in Redundant Representations , 2008, IEEE Transactions on Image Processing.

[38]  E. M. Winter,et al.  Anomaly detection from hyperspectral imagery , 2002, IEEE Signal Process. Mag..

[39]  Bruce J. Tromberg,et al.  Face Recognition in Hyperspectral Images , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Yassir Moudden,et al.  Hyperspectral BSS Using GMCA With Spatio-Spectral Sparsity Constraints , 2011, IEEE Transactions on Image Processing.

[41]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[42]  Martin Vetterli,et al.  Data Compression and Harmonic Analysis , 1998, IEEE Trans. Inf. Theory.

[43]  D. Labate,et al.  The Construction of Smooth Parseval Frames of Shearlets , 2013 .

[44]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[45]  G. Easley,et al.  Sparse directional image representations using the discrete shearlet transform , 2008 .

[46]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[47]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[48]  Antonio J. Plaza,et al.  Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[49]  ZhangYin,et al.  Alternating Direction Algorithms for $\ell_1$-Problems in Compressive Sensing , 2011 .

[50]  Saurabh Prasad,et al.  Limitations of Principal Components Analysis for Hyperspectral Target Recognition , 2008, IEEE Geoscience and Remote Sensing Letters.

[51]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..

[52]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[53]  Hao Wu,et al.  Superpixels for Spatially Reinforced Bayesian Classification of Hyperspectral Images , 2015, IEEE Geoscience and Remote Sensing Letters.

[54]  Johannes R. Sveinsson,et al.  Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles , 2008, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[55]  Antonio J. Plaza,et al.  Sparse Unmixing of Hyperspectral Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[56]  Saurabh Prasad,et al.  Multisource Geospatial Data Fusion via Local Joint Sparse Representation , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[57]  José M. Bioucas-Dias,et al.  An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems , 2009, IEEE Transactions on Image Processing.

[58]  Demetrio Labate,et al.  Rotation invariance through structured sparsity for robust hyperspectral image classification , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).