Indigo ‐ A Natural Pigment for High Performance Ambipolar Organic Field Effect Transistors and Circuits

Millenniums-old natural dye indigo--a "new" ambipolar organic semiconductor. Indigo shows balanced electron and hole mobilities of 1 × 10(-2) cm(2) V(-1) s(-1) and good stability against degradation in air. Inverters with gains of 105 in the first and 110 in the third quadrant are demonstrated. Fabricated entirely from natural and biodegradable compounds, these devices show the large potential of such materials for green organic electronics.

[1]  N. Muslim,et al.  Evaluation of cytotoxic, anti-angiogenic and antioxidant properties of standardized extracts of Strobilanthes crispus leaves. , 2010 .

[2]  S. Bauer,et al.  Biocompatible and Biodegradable Materials for Organic Field‐Effect Transistors , 2010 .

[3]  R. Jacob Baker,et al.  CMOS Circuit Design, Layout, and Simulation , 1997 .

[4]  Ying Zhang,et al.  Air stable, ambipolar organic transistors and inverters based upon a heterojunction structure of pentacene on N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic di-imide , 2010 .

[5]  Z. Bao,et al.  Organic Thin‐Film Transistors Fabricated on Resorbable Biomaterial Substrates , 2010, Advanced materials.

[6]  A. Opitz,et al.  Ambipolar charge carrier transport in organic semiconductor blends of phthalocyanine and fullerene , 2008 .

[7]  S. Jenekhe,et al.  Air-stable ambipolar field-effect transistors and complementary logic circuits from solution-processed n/p polymer heterojunctions. , 2010, ACS applied materials & interfaces.

[8]  Mihai Irimia-Vladu,et al.  Small-molecule vacuum processed melamine-C60, organic field-effect transistors , 2009 .

[9]  A. Baeyer,et al.  Darstellung von Indigblau aus Orthonitrobenzaldehyd , 1882 .

[10]  Paul H. Wöbkenberg,et al.  Ambipolar organic transistors and near-infrared phototransistors based on a solution-processable squarilium dye , 2010 .

[11]  W. Gardner,et al.  Chemical Composition of Shellac , 1938 .

[12]  Microwave Dielectric Properties of Indian Shellac in the 8-mm. Range , 1959, Nature.

[13]  J. Haines,et al.  Microbial degradation of high-molecular-weight alkanes. , 1974, Applied microbiology.

[14]  A. Mohebbi,et al.  Emeraldicene as an Acceptor Moiety: Balanced‐Mobility, Ambipolar, Organic Thin‐Film Transistors , 2011, Advanced materials.

[15]  Janos Veres,et al.  A novel gate insulator for flexible electronics , 2003 .

[16]  Y. Ohmori,et al.  Top-gate-type ambipolar organic field-effect transistors with indium–tin oxide drain/source electrodes using polyfluorene derivatives , 2010 .

[17]  Mihai Irimia-Vladu,et al.  Exotic materials for bio-organic electronics , 2011 .

[18]  T. Nakayama,et al.  Characterization of natural resin shellac by reactive pyrolysis-gas chromatography in the presence of organic alkali. , 1999, Analytical chemistry.

[19]  A. Opitz,et al.  High-mobility copper-phthalocyanine field-effect transistors with tetratetracontane passivation layer and organic metal contacts , 2010 .

[20]  Eugenio Cantatore,et al.  Air‐Stable Complementary‐like Circuits Based on Organic Ambipolar Transistors , 2006 .

[21]  Zhenan Bao,et al.  Organic Field-Effect Transistors , 2007 .

[22]  Stéphanie P. Lacour,et al.  Complementary organic thin film transistor circuits fabricated directly on silicone substrates , 2010 .

[23]  Shinuk Cho,et al.  Poly(diketopyrrolopyrrole‐benzothiadiazole) with Ambipolarity Approaching 100% Equivalency , 2011 .

[24]  Ruth Shinar,et al.  Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview , 2008 .

[25]  W. Lüttke,et al.  Theoretische und spektroskopische Untersuchungen an Indigofarbstoffen, I. Infrarot‐ und Lichtabsorptionsspektren einfacher Indigofarbstoffe , 1964 .

[26]  H. Klauk,et al.  Ultralow-power organic complementary circuits , 2007, Nature.

[27]  N. S. Sariciftci,et al.  The role of the dielectric interface in organic transistors: a combined device and photoemission study , 2010 .

[28]  H. Yan,et al.  Ambipolar pentacene/C60-based field-effect transistors with high hole and electron mobilities in ambient atmosphere , 2009 .

[29]  P. Sonar,et al.  A Low‐Bandgap Diketopyrrolopyrrole‐Benzothiadiazole‐Based Copolymer for High‐Mobility Ambipolar Organic Thin‐Film Transistors , 2010, Advanced materials.

[30]  H. Sirringhaus,et al.  High Mobility Ambipolar Charge Transport in Polyselenophene Conjugated Polymers , 2010, Advanced materials.

[31]  M. White,et al.  The structure and properties of evaporated polyethylene thin films , 1970 .

[32]  N. S. Sariciftci,et al.  Hot wall epitaxial growth of highly ordered organic epilayers , 2003 .