High-channel-count 20  GHz passively mode-locked quantum dot laser directly grown on Si with 41  Tbit/s transmission capacity

Low-cost, small-footprint, highly efficient, and mass-producible on-chip wavelength-division-multiplexing (WDM) light sources are key components in future silicon electronic and photonic integrated circuits (EPICs), which can fulfill the rapidly increasing bandwidth and lower energy per bit requirements. We present here, for the first time to our knowledge, a low-noise high-channel-count 20 GHz passively mode-locked quantum dot laser grown on a complementary metal-oxide-semiconductor compatible on-axis (001) silicon substrate. The laser demonstrates a wide mode-locking regime in the O band. A record low timing jitter value for passively mode-locked semiconductor lasers of 82.7 fs (4–80 MHz) and a narrow RF 3 dB linewidth of 1.8 kHz are measured. The 3 dB optical bandwidth of the comb is 6.1 nm (containing 58 lines, with 80 lines within the 10 dB bandwidth). The integrated average relative intensity noise values of the whole spectrum and a single wavelength channel are −152  dB/Hz and −133  dB/Hz in the frequency range from 10 MHz to 10 GHz, respectively. Utilizing 64 channels, an aggregate total transmission capacity of 4.1 terabits per second is realized by employing a 32 Gbaud Nyquist four-level pulse amplitude modulation format. The demonstrated performance makes the laser a compelling on-chip WDM source for multi-terabit/s optical interconnects in future large-scale silicon EPICs.

[1]  Zeyu Zhang,et al.  Highly Reliable Low-Threshold InAs Quantum Dot Lasers on On-Axis (001) Si with 87% Injection Efficiency , 2018 .

[2]  John E. Bowers,et al.  Energy Efficient and Energy Proportional Optical Interconnects for Multi-Core Processors: Driving the Need for On-Chip Sources , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  G. Fish,et al.  Low phase noise hybrid silicon mode-locked lasers , 2014 .

[4]  John Bowers,et al.  Photonic Integration With Epitaxial III–V on Silicon , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[6]  Feng Gao,et al.  Ultrashort Pulse and High Power Mode-Locked Laser With Chirped InAs/InP Quantum Dot Active Layers , 2016, IEEE Photonics Technology Letters.

[7]  G. Fish,et al.  Characterization of a fully integrated heterogeneous silicon/III-V colliding pulse mode-locked laser with on-chip feedback. , 2018, Optics express.

[8]  Idelfonso Tafur Monroy,et al.  Real-time 200 Gb/s (4×56.25 Gb/s) PAM-4 transmission over 80 km SSMF using quantum-dot laser and silicon ring-modulator , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[9]  Radhakrishnan Nagarajan,et al.  Silicon photonics-based 100 Gbit/s, PAM4, DWDM data center interconnects , 2018, IEEE/OSA Journal of Optical Communications and Networking.

[10]  B. Nebendahl,et al.  Single-laser 32.5 Tbit/s Nyquist WDM transmission , 2012, IEEE/OSA Journal of Optical Communications and Networking.

[11]  F. Kschischang,et al.  Roadmap of optical communications , 2015, 1507.05157.

[12]  Songtao Liu,et al.  Low-Cost AWG-Based Fundamental Frequency Mode-Locked Semiconductor Laser for Multichannel Synchronous Ultrashort Pulse Generation , 2016, IEEE Photonics Journal.

[13]  John E. Bowers,et al.  Short pulse generation using multisegment mode-locked semiconductor lasers , 1992 .

[14]  John E. Bowers,et al.  Monolithic 9 GHz passively mode locked quantum dot lasers directly grown on on-axis (001) Si , 2018, Applied Physics Letters.

[15]  Bin Tian,et al.  Room Temperature O-band DFB Laser Array Directly Grown on (001) Silicon. , 2017, Nano letters.

[16]  Rajeev J. Ram,et al.  Single-chip microprocessor that communicates directly using light , 2015, Nature.

[17]  S. Sekiguchi,et al.  Flip-chip-bonded, 8-wavelength AlGaInAs DFB laser array operable up to 70°C for silicon WDM interconnects , 2014, 2014 The European Conference on Optical Communication (ECOC).

[18]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[19]  Di Liang,et al.  Error-Free Operation in a Hybrid-Silicon Quantum Dot Comb Laser , 2018, IEEE Photonics Technology Letters.

[20]  A. Enard,et al.  60 GHz radio-over-fiber technologies for broadband wireless services [Invited] , 2009 .

[21]  Zeyu Zhang,et al.  Effects of modulation p doping in InAs quantum dot lasers on silicon , 2018, Applied Physics Letters.

[22]  Bin Tian,et al.  Room-temperature InP distributed feedback laser array directly grown on silicon , 2015 .

[23]  M. Thompson,et al.  InGaAs Quantum-Dot Mode-Locked Laser Diodes , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  H. Toba,et al.  Reduction of mode partition noise by using semiconductor optical amplifiers , 2000, Conference Digest. 2000 IEEE 17th International Semiconductor Laser Conference. (Cat. No.00CH37092).

[25]  Rajeev J Ram,et al.  Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip , 2018, Nature.

[26]  John E. Bowers,et al.  Low threading dislocation density GaAs growth on on-axis GaP/Si (001) , 2017 .

[27]  E. Bente,et al.  A III-V-on-Si ultra-dense comb laser , 2016, Light: Science & Applications.

[28]  Marco Fiorentino,et al.  A comb laser-driven DWDM silicon photonic transmitter based on microring modulators. , 2015, Optics express.

[29]  P. Petropoulos,et al.  Single-laser 32.5 Tbit/s Nyquist-WDM , 2012, 2012 International Conference on Photonics in Switching (PS).

[30]  N. Kikuchi,et al.  Intensity-modulated / direct-detection (IM/DD) Nyquist pulse-amplitude modulation (PAM) signaling for 100-Gbit/s/λ optical short-reach transmission , 2014, 2014 The European Conference on Optical Communication (ECOC).

[31]  Wei Li,et al.  Monolithic quantum-dot distributed feedback laser array on silicon , 2018, 1801.01052.

[32]  J. Bowers,et al.  Integrated heterogeneous silicon/III–V mode-locked lasers , 2018 .

[33]  Qixiang Cheng,et al.  Recent advances in optical technologies for data centers: a review , 2018, Optica.

[34]  G. Carpintero,et al.  Low Noise Performance of Passively Mode-Locked 10-GHz Quantum-Dot Laser Diode , 2009, IEEE Photonics Technology Letters.