“Social cohesion analysis of networks: a novel method for identifying cohesive subgroups in social hypertext” by Alvin Chin, with Jessica Rubart as coordinator

Alvin Chin is a Member of Research Staff at Nokia Research Center (NRC), Beijing, working in the Mobile Social Networking group. Alvin recently completed his PhD in Computer Science from the University of Toronto where he worked under Professor Mark Chignell. His PhD thesis was entitled "Social Cohesion Analysis of Networks: A Novel Method for Identifying Cohesive Subgroups in Social Hypertext" where he created a framework for automatically identifying influential members in subgroups from online social networks. At NRC Beijing, Alvin's research involves creating novel solutions that use the cell phone and context to participate and integrate with other users and online social networks, and enabling an intuitive user experience for social networking. He graduated with a Bachelors degree in Computer Engineering and a Masters degree in Electrical and Computer Engineering from the University of Waterloo. He has worked 2.5 years full time in industry researching emerging technologies in the wireless and pervasive computing area, especially Bluetooth and 802.11. His current research interests include social networking, computer-supported collaborative work, context-aware computing, and pervasive computing. Alvin is an active user of social networking and Web 2.0 technologies. He can be contacted at alvin.chin@nokia.com, and blogs frequently at http://www.alvinychin.com/blog.

[1]  R. Sokal,et al.  Principles of numerical taxonomy , 1965 .

[2]  Philip S. Yu,et al.  Mining Community Structure of Named Entities from Web Pages and Blogs , 2006, AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs.

[3]  R. Hanneman Introduction to Social Network Methods , 2001 .

[4]  C. Stein,et al.  Comparing the Structure and Stability of Network Ties Using the Social Support Questionnaire and the Social Network List , 1997 .

[5]  Lilia Efimova,et al.  In search for a virtual settlement : an exploration of weblog community boundaries , 2004 .

[6]  Mark H. Chignell,et al.  Identifying communities in blogs: roles for social network analysis and survey instruments , 2007, Int. J. Web Based Communities.

[7]  Andreas Noack,et al.  Modularity clustering is force-directed layout , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  G. Tomlinson,et al.  YouTube as a source of information on immunization: a content analysis. , 2007, JAMA.

[9]  D. Chavis,et al.  Sense of community: A definition and theory , 1986 .

[10]  Grigory Begelman,et al.  Automated Tag Clustering: Improving search and exploration in the tag space , 2006 .

[11]  Ravi Kumar,et al.  On the Bursty Evolution of Blogspace , 2003, WWW '03.

[12]  Cameron A. Marlow Audience, structure and authority in the weblog community , 2004 .

[13]  Philip S. Yu,et al.  Clustering by pattern similarity in large data sets , 2002, SIGMOD '02.

[14]  Amy Bruckman,et al.  Building Virtual Communities: The Mystery of the Death of MediaMOO: Seven Years of Evolution of an Online Community , 2002 .

[15]  L. Spillmann,et al.  Motion and shape in common fate , 2000, Vision Research.

[16]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Mark H. Chignell,et al.  Effect of different network analysis strategies on search engine re-ranking , 2004, CASCON.

[18]  Bernardo A. Huberman,et al.  E-Mail as Spectroscopy: Automated Discovery of Community Structure within Organizations , 2005, Inf. Soc..

[19]  S. Wasserman,et al.  Building stochastic blockmodels , 1992 .

[20]  Yan Zhao,et al.  Visualization of Communication Patterns in Collaborative Innovation Networks - Analysis of Some W3C Working Groups , 2003, CIKM '03.

[21]  Jeroen K. Vermunt,et al.  What is special about social network analysis , 2006 .

[22]  A. Arenas,et al.  Community detection in complex networks using extremal optimization. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  An-Ping Zeng,et al.  The Connectivity Structure, Giant Strong Component and Centrality of Metabolic Networks , 2003, Bioinform..

[24]  Quentin Jones,et al.  Virtual-Communities, Virtual Settlements & Cyber-Archaeology: A Theoretical Outline , 2006, J. Comput. Mediat. Commun..

[25]  Falk Schreiber,et al.  Comparison of Centralities for Biological Networks , 2004, German Conference on Bioinformatics.

[26]  Lillian T. Eby,et al.  Psychological sense of community at work: A measurement system and explanatory framework. , 1998 .

[27]  John C. Paolillo,et al.  Social Network Analysis on the Semantic Web: Techniques and Challenges for Visualizing FOAF , 2006, Visualizing the Semantic Web, 2nd Edition.

[28]  David Kotz,et al.  Localized Bridging Centrality for Distributed Network Analysis , 2008, 2008 Proceedings of 17th International Conference on Computer Communications and Networks.

[29]  Alex Breuer abreuer Blogs In Brief-Experiments in Query Result Presentation using MEAD , 2005 .

[30]  Thomas W. Valente,et al.  The stability of centrality measures when networks are sampled , 2003, Soc. Networks.

[31]  Duncan J. Watts,et al.  Six Degrees: The Science of a Connected Age , 2003 .

[32]  I. Sarason,et al.  Assessing Social Support: The Social Support Questionnaire. , 1983 .

[33]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[34]  Ravi Kumar,et al.  Trawling the Web for Emerging Cyber-Communities , 1999, Comput. Networks.

[35]  Bethany S. Dohleman Exploratory social network analysis with Pajek , 2006 .

[36]  Kenneth A. Frank,et al.  Identifying cohesive subgroups , 1995 .

[37]  D. Chavis,et al.  Sense of community in the urban environment: A catalyst for participation and community development , 1990 .

[38]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[39]  Janice Singer,et al.  Exploring the Gender Divide on YouTube: An Analysis of the Creation and Reception of Vlogs , 2008 .

[40]  Lawrence B. Holder,et al.  Graph-based Data Mining on Social Networks , 2004 .

[41]  Thierry Chanier,et al.  How Social Network Analysis can help to Measure Cohesion in Collaborative Distance-Learning , 2003, CSCL.

[42]  A. Richardsen,et al.  Cohesion as a Basic Bond in Groups , 1983 .

[43]  B. Wellman Structural analysis: From method and metaphor to theory and substance. , 1988 .

[44]  David A. Bader,et al.  Parallel Algorithms for Evaluating Centrality Indices in Real-world Networks , 2006, 2006 International Conference on Parallel Processing (ICPP'06).

[45]  Ravi Kumar,et al.  Discovering Large Dense Subgraphs in Massive Graphs , 2005, VLDB.

[46]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[47]  Anita L. Blanchard Blogs as Virtual Communities: Identifying a Sense of Community in the Julie/Julia Project , 2004 .

[48]  Ulrik Brandes,et al.  Drawing on Physical Analogies , 2001, Drawing Graphs.

[49]  Mária Bieliková,et al.  An Approach for Community Cutting , 2005 .

[50]  N. Peterson,et al.  Sense of community in community organizations: Structure and evidence of validity , 1999 .

[51]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[52]  George Karypis,et al.  Evaluation of hierarchical clustering algorithms for document datasets , 2002, CIKM '02.

[53]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[54]  Eytan Adar,et al.  Implicit Structure and the Dynamics of Blogspace , 2004 .

[55]  V. Latora,et al.  Centrality measures in spatial networks of urban streets. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  M. Richman,et al.  Euclidean Distance as a Similarity Metric for Principal Component Analysis , 2001 .

[57]  K. Campbell,et al.  Name generators in surveys of personal networks , 1991 .

[58]  M. A. Muñoz,et al.  Journal of Statistical Mechanics: An IOP and SISSA journal Theory and Experiment Detecting network communities: a new systematic and efficient algorithm , 2004 .

[59]  C. Lee Giles,et al.  Self-Organization and Identification of Web Communities , 2002, Computer.

[60]  Peter A. Gloor,et al.  Capturing team dynamics through temporal social surfaces , 2005, Ninth International Conference on Information Visualisation (IV'05).

[61]  Leon Danon,et al.  Comparing community structure identification , 2005, cond-mat/0505245.

[62]  J. Orford Implementation of criteria for partitioning a dendrogram , 1976 .

[63]  Lois Ann Scheidt,et al.  Bridging the gap: a genre analysis of Weblogs , 2004, 37th Annual Hawaii International Conference on System Sciences, 2004. Proceedings of the.

[64]  Bin Wu,et al.  Community detection in large-scale social networks , 2007, WebKDD/SNA-KDD '07.

[65]  Ding-Zhu Du,et al.  A Decision Criterion for the Optimal Number of Clusters in Hierarchical Clustering , 2003, J. Glob. Optim..

[66]  Thomas Schank,et al.  UvA-DARE ( Digital Academic Repository ) Animating the development of social networks over time using a dynamic extension of multidimensional scaling , 2008 .

[67]  P. Ji,et al.  A Solution Method for the Quadratic Assignment Problem ( QAP ) , 2006 .

[68]  R. Driskell,et al.  Are Virtual Communities True Communities? Examining the Environments and Elements of Community , 2002 .

[69]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[70]  A. Clauset Finding local community structure in networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  David R. Karger,et al.  Scatter/Gather: a cluster-based approach to browsing large document collections , 1992, SIGIR '92.

[72]  Janice Singer,et al.  New Visual Media and Gender: A Content, Visual, and Audience Analysis of YouTube Vlogs , 2008 .

[73]  Daniel A. McFarland,et al.  Dynamic Network Visualization1 , 2005, American Journal of Sociology.

[74]  Carman Neustaedter,et al.  The Social Network and Relationship Finder: Social Sorting for Email Triage , 2005, CEAS.

[75]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[76]  Jonathan H. Turner,et al.  Toward a Structural Theory of Action: Network Models of Social Structure, Perception and Action.Ronald S. Burt , 1985 .

[77]  Peter Bruza,et al.  The ABC's of Online Community , 2001, Web Intelligence.

[78]  Caroline Haythornthwaite,et al.  A Noun Phrase Analysis Tool for Mining Online Community Conversations , 2007 .

[79]  H. Tajfel,et al.  The Social Identity Theory of Intergroup Behavior. , 2004 .

[80]  Barton J. Hirsch,et al.  Psychological dimensions of social networks: A multimethod analysis , 1979 .

[81]  M. Mizruchi,et al.  Techniques for Disaggregating Centrality Scores in Social Networks , 1986 .

[82]  Martin Halvey,et al.  Exploring social dynamics in online media sharing , 2007, WWW '07.

[83]  L. Hubert,et al.  Quadratic assignment as a general data analysis strategy. , 1976 .

[84]  Mark H. Chignell,et al.  A social hypertext model for finding community in blogs , 2006, HYPERTEXT '06.

[85]  Hsinchun Chen,et al.  Automated Identification of Web Communities for Business Intelligence Analysis , 2005 .

[86]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[87]  Ronald S. Burt,et al.  Network items and the general social survey , 1984 .

[88]  P. Jaccard Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines , 1901 .

[89]  Caroline Haythornthwaite,et al.  Studying Online Social Networks , 2006, J. Comput. Mediat. Commun..

[90]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[91]  Ming Ouyang,et al.  A vector partitioning approach to detecting community structure in complex networks , 2008, Comput. Math. Appl..

[92]  Alvin Chin,et al.  FINDING EVIDENCE OF COMMUNITY FROM BLOGGING CO-CITATIONS : A SOCIAL NETWORK ANALYTIC APPROACH , 2005 .

[93]  Andy Hoskinson Creating the Ultimate Research Assistant , 2005, Computer.

[94]  Gary Geisler,et al.  Tagging video: conventions and strategies of the YouTube community , 2007, JCDL '07.

[95]  Tanya Y. Berger-Wolf,et al.  A framework for community identification in dynamic social networks , 2007, KDD '07.

[96]  Massimo Marchiori,et al.  Method to find community structures based on information centrality. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[97]  Claudio Castellano,et al.  Defining and identifying communities in networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[98]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[99]  David L. Hicks,et al.  Notice of Violation of IEEE Publication PrinciplesDetecting high-value individuals in covert networks: 7/7 London bombing case study , 2008, 2008 IEEE/ACS International Conference on Computer Systems and Applications.

[100]  R. Alba A graph‐theoretic definition of a sociometric clique† , 1973 .

[101]  Thomas Erickson,et al.  The World-Wide-Web as social hypertext , 1996, CACM.

[102]  Yun Chi,et al.  Facetnet: a framework for analyzing communities and their evolutions in dynamic networks , 2008, WWW.

[103]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockmodels for Graphs with Latent Block Structure , 1997 .

[104]  Bernardo A. Huberman,et al.  The Structure of Collaborative Tagging Systems , 2005, ArXiv.

[105]  Tim Dwyer,et al.  Visual analysis of network centralities , 2006, APVIS.

[106]  L. Freeman Finding Social Groups: A Meta-Analysis of the Southern Women Data , 2003 .

[107]  M. Lynne Markus,et al.  The experienced "sense" of a virtual community: characteristics and processes , 2004, DATB.

[108]  Nan Zheng,et al.  Issue Publics on the Web: Applying Network Theory to the War Blogosphere , 2006, J. Comput. Mediat. Commun..

[109]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[110]  Weixiong Zhang,et al.  An Efficient Spectral Algorithm for Network Community Discovery and Its Applications to Biological and Social Networks , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[111]  Bonnie A. Nardi,et al.  Why we blog , 2004, CACM.

[112]  Luciano Rossoni,et al.  Models and methods in social network analysis , 2006 .

[113]  Shane Dawson,et al.  Learning Communities – an untapped sustainable competitive advantage for Higher education , 2006 .

[114]  Robert A. M. Gregson,et al.  Psychometrics of similarity , 1975 .

[115]  O. Daescu,et al.  Centrality Measures for the Human Red Blood Cell Interactome , 2007, 2007 IEEE Dallas Engineering in Medicine and Biology Workshop.

[116]  Jon M. Kleinberg,et al.  Group formation in large social networks: membership, growth, and evolution , 2006, KDD '06.

[117]  Myra Spiliopoulou,et al.  Community dynamics mining , 2006, ECIS.

[118]  Danyel Fisher,et al.  Visualizing the Signatures of Social Roles in Online Discussion Groups , 2007, J. Soc. Struct..

[119]  J. A. Rodríguez-Velázquez,et al.  Subgraph centrality in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[120]  David L. Hicks,et al.  Detecting Hidden Hierarchy in Terrorist Networks: Some Case Studies , 2008, ISI Workshops.

[121]  Mark H. Chignell,et al.  Automatic detection of cohesive subgroups within social hypertext: A heuristic approach , 2008, New Rev. Hypermedia Multim..

[122]  Carolyn Wei Formation of Norms in a Blog Community , 2004 .

[123]  Christopher H. Brooks,et al.  Improved annotation of the blogosphere via autotagging and hierarchical clustering , 2006, WWW '06.

[124]  Danyel Fisher,et al.  Using egocentric networks to understand communication , 2005, IEEE Internet Computing.

[125]  Jennifer Preece,et al.  Designing and evaluating online communities: research speaks to emerging practice , 2004, Int. J. Web Based Communities.

[126]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[127]  Britta Ruhnau,et al.  Eigenvector-centrality - a node-centrality? , 2000, Soc. Networks.

[128]  Premkumar T. Devanbu,et al.  Quantitative Study of Open Source Immigration , 2007 .

[129]  Caroline Haythornthwaite,et al.  Automated Discovery and Analysis of Social Networks from Threaded Discussions , 2008 .

[130]  Vicenç Gómez,et al.  Statistical analysis of the social network and discussion threads in slashdot , 2008, WWW.

[131]  Jure Leskovec,et al.  Statistical properties of community structure in large social and information networks , 2008, WWW.

[132]  Mark H. Chignell,et al.  Identifying subcommunities using cohesive subgroups in social hypertext , 2007, HT '07.

[133]  A. Tversky Features of Similarity , 1977 .

[134]  Roland Wilson,et al.  Unsupervised learning and clustering using a random field approach , 2007 .

[135]  Ravi Kumar,et al.  Structure and evolution of blogspace , 2004, CACM.

[136]  D. Hindman The Virtual Community: Homesteading on the Electronic Frontier , 1996 .

[137]  Sergiy Butenko,et al.  Clique Relaxations in Social Network Analysis: The Maximum k-Plex Problem , 2011, Oper. Res..

[138]  Simone Santini,et al.  Similarity Measures , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[139]  Barry Wellman,et al.  Visualizing Personal Networks: Working with Participant-aided Sociograms , 2007 .

[140]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[141]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[142]  Mor Naaman,et al.  HT06, tagging paper, taxonomy, Flickr, academic article, to read , 2006, HYPERTEXT '06.

[143]  Wei-Ying Ma,et al.  Object-level ranking: bringing order to Web objects , 2005, WWW '05.

[144]  T. Snijders,et al.  Longitudinal models in the behavioral and related sciences , 2007 .

[145]  Patricia G. Lange Publicly Private and Privately Public: Social Networking on YouTube , 2007, J. Comput. Mediat. Commun..

[146]  Caroline Haythornthwaite,et al.  Social networks and Internet connectivity effects , 2005 .