A new zero-test for formal power series
暂无分享,去创建一个
[1] Ariane Péladan-Germa,et al. Testing Identities of Series Defined by Algebraic Partial Differential Equations , 1995, AAECC.
[2] H. T. Kung,et al. Fast Algorithms for Manipulating Formal Power Series , 1978, JACM.
[3] James Ax,et al. On Schanuel's Conjectures , 1971 .
[4] Joris van der Hoeven,et al. Fast Evaluation of Holonomic Functions Near and in Regular Singularities , 2001, J. Symb. Comput..
[5] John Shackell. Zero-equivalence in function fields defined by algebraic differential equations , 1993 .
[6] Daniel Richardson,et al. The Uniformity Conjecture , 2000, CCA.
[7] Leonard Lipshitz,et al. Decision problems for differential equations , 1989, Journal of Symbolic Logic.
[8] François Boulier,et al. Étude et implantation de quelques algorithmes en algèbre différentielle. (Study and implementation of some algorithms in differential algebra) , 1994 .
[9] Joris van der Hoeven,et al. Relax, but Don't be Too Lazy , 2002, J. Symb. Comput..
[10] J. Shackle,et al. A differential-equations approach to functional equivalence , 1989, ISSAC '89.
[11] Robert H. Risch. ALGEBRAIC PROPERTIES OF THE ELEMENTARY FUNCTIONS OF ANALYSIS. , 1979 .
[12] Jens Blanck,et al. Computability and complexity in analysis : 4th International Workshop, CCA 2000, Swansea, UK, September 17-19, 2000 : selected papers , 2001 .
[13] L. Lipshitz,et al. Power series solutions of algebraic differential equations , 1984 .