Interconnects for nanoscale MOSFET technology: a review

In this paper, a review of Cu/low-k, carbon nanotube (CNT), graphene nanoribbon (GNR) and optical based interconnect technologies has been done. Interconnect models, challenges and solutions have also been discussed. Of all the four technologies, CNT interconnects satisfy most of the challenges and they are most suited for nanometer scale technologies, despite some minor drawbacks. It is concluded that beyond 32 nm technology, a paradigm shift in the interconnect material is required as Cu/low-k interconnects are approaching fundamental limits.

[1]  P. Kapur,et al.  Compact Performance Models and Comparisons for Gigascale On-Chip Global Interconnect Technologies , 2009, IEEE Transactions on Electron Devices.

[2]  T. Ragheb,et al.  On the modeling of resistance in graphene nanoribbon (GNR) for future interconnect applications , 2008, ICCAD 2008.

[3]  R. Rosenberg,et al.  Electromigration of Cu/low dielectric constant interconnects , 2006, Microelectron. Reliab..

[4]  A. S. Oates,et al.  Electromigration failure distributions of dual damascene Cu /low - k interconnects , 2006, Microelectron. Reliab..

[5]  Baozhen Li,et al.  Reliability challenges for copper interconnects , 2004, Microelectron. Reliab..

[6]  Hybrid EM/circuit modeling for carbon nanotubes based interconnects , 2011, 2011 IEEE 13th Electronics Packaging Technology Conference.

[7]  Jinhong Yuan,et al.  Skin effect of on-chip copper interconnects on electromigration , 2002 .

[8]  J. Torres,et al.  Electromigration failure modes in damascene copper interconnects , 1998 .

[9]  P.C.H. Chan,et al.  Copper/carbon nanotube composite interconnect for enhanced electromigration resistance , 2008, 2008 58th Electronic Components and Technology Conference.

[10]  Jean Dijon,et al.  Carbon nanotubes for interconnects in future integrated circuits: The challenge of the density , 2010 .

[11]  Paul S. Ho,et al.  Effect of low k dielectrics on electromigration reliability for Cu interconnects , 2004 .

[12]  R. Murali,et al.  Resistivity of Graphene Nanoribbon Interconnects , 2009, IEEE Electron Device Letters.

[13]  Lionel C. Kimerling,et al.  On-chip interconnection beyond semiconductor roadmap: silicon microphotonics , 2002, SPIE ITCom.

[14]  F. Shi,et al.  Design and control of critical properties of low-k dielectrics for nanoscale interconnects , 2004, Proceedings. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004..

[15]  Bin Yu,et al.  Reliability study of bilayer graphene - material for future transistor and interconnect , 2010, 2010 IEEE International Reliability Physics Symposium.

[16]  P. Kapur,et al.  Optical interconnects for future high performance integrated circuits , 2003 .

[17]  A. Uedono,et al.  Impact of Al in Cu alloy interconnects on electro and stress migration reliabilities , 2008 .

[18]  T. Gessner,et al.  Geometrical optimization of multilevel interconnects using Cu and low- k dielectrics , 1997 .

[19]  Yen-Lin Huang,et al.  Characteristics of a 10 nm-thick (TiVCr)N multi-component diffusion barrier layer with high diffusion resistance for Cu interconnects , 2011 .

[20]  José Luis González,et al.  Shape effect on electromigration in VLSI interconnects , 1997 .

[21]  Peter Ramm,et al.  3D Integration technology: Status and application development , 2010, 2010 Proceedings of ESSCIRC.

[22]  J. Meindl,et al.  Compact Physics-Based Circuit Models for Graphene Nanoribbon Interconnects , 2009, IEEE Transactions on Electron Devices.

[23]  H. Gamble,et al.  Surface electromigration in copper interconnects , 1999, 1999 IEEE International Reliability Physics Symposium Proceedings. 37th Annual (Cat. No.99CH36296).

[24]  M. Meyyappan,et al.  Bottom-up approach for carbon nanotube interconnects , 2003 .

[25]  Prospects of carbon nanomaterials in VLSI for interconnections and energy storage , 2009, 2009 31st EOS/ESD Symposium.

[26]  M. Bohr Interconnect scaling-the real limiter to high performance ULSI , 1995, Proceedings of International Electron Devices Meeting.

[27]  Realistic electromigration lifetime projection of VLSI interconnects , 1994 .

[28]  D. Schmeißer,et al.  Ultrathin TaN/Ta barrier modifications to fullfill next technology node requirements , 2011, 2011 IEEE International Interconnect Technology Conference.

[29]  S Rakheja,et al.  Modeling Interconnects for Post-CMOS Devices and Comparison With Copper Interconnects , 2011, IEEE Transactions on Electron Devices.

[30]  F. Cacho,et al.  Analysis of electromigration induced early failures in Cu interconnects for 45nm node , 2010 .

[31]  C-K. Hu,et al.  Electromigration in two-level interconnects of Cu and Al alloys , 1995 .

[32]  C. Bailey,et al.  Interconnect technologies using Carbon Nanotubes: Current status and future challenges , 2011, Proceedings of the 2011 34th International Spring Seminar on Electronics Technology (ISSE).

[33]  Hafizur Rahaman,et al.  Crosstalk and Gate Oxide Reliability Analysis in Graphene Nanoribbon Interconnects , 2011, 2011 International Symposium on Electronic System Design.

[34]  Yoshihiro Takao,et al.  A 0.11 mum CMOS technology featuring copper and very low k interconnects with high performance and reliability , 2002, Microelectron. Reliab..

[35]  C. Xu,et al.  Graphene nano-ribbon (GNR) interconnects: A genuine contender or a delusive dream? , 2008, 2008 IEEE International Electron Devices Meeting.

[36]  James D. Meindl,et al.  Interconnect limits on gigascale integration (GSI) , 2001, 2001 6th International Symposium on Plasma- and Process-Induced Damage (IEEE Cat. No.01TH8538).

[37]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[38]  P. Besser,et al.  Microstructure characterization of metal interconnects and barrier layers: status and future , 2000, Proceedings of the IEEE 2000 International Interconnect Technology Conference (Cat. No.00EX407).

[39]  S.C. Sun,et al.  Process technologies for advanced metallization and interconnect systems , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[40]  Hui Chen,et al.  On-Chip Optical Interconnect Roadmap: Challenges and Critical Directions , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[41]  C. Xu,et al.  Modeling, Analysis, and Design of Graphene Nano-Ribbon Interconnects , 2009, IEEE Transactions on Electron Devices.

[42]  Kaustav Banerjee,et al.  Interconnect limits on gigascale integration (GSI) in the 21st century , 2001, Proc. IEEE.

[43]  C. Xu,et al.  Carbon Nanomaterials for Next-Generation Interconnects and Passives: Physics, Status, and Prospects , 2009, IEEE Transactions on Electron Devices.

[44]  Yuji Awano,et al.  Graphene for VLSI: FET and interconnect applications , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[45]  K. Banerjee,et al.  On the Applicability of Single-Walled Carbon Nanotubes as VLSI Interconnects , 2009, IEEE Transactions on Nanotechnology.

[46]  W. Yin,et al.  Modeling of carbon nanotube interconnects and comparative analysis with Cu interconnects , 2006, 2006 Asia-Pacific Microwave Conference.

[47]  T. Ohmi,et al.  Cu Single Damascene Integration of an Organic Nonporous Ultralow- $k$ Fluorocarbon Dielectric Deposited by Microwave-Excited Plasma-Enhanced CVD , 2012, IEEE Transactions on Electron Devices.

[48]  X. Federspiel,et al.  Improved electrical and reliability performance of 65nm interconnects with new barrier integration schemes , 2006 .

[49]  A. O'Neill,et al.  Comparative study of novel barrier layers in ULSI copper interconnects , 2007 .

[50]  G. Reimbold,et al.  Influence of the sidewall diffusion barrier on the transport properties of advanced Cu/low-k interconnects , 2005 .

[51]  Daniel C. Edelstein,et al.  Co capping layers for Cu/low-k interconnects , 2012 .

[52]  Poras T. Balsara,et al.  Interconnect modeling for copper/low-k technologies , 2004, 17th International Conference on VLSI Design. Proceedings..

[53]  C. Detavernier,et al.  Investigation of ultra-thin Al2O3 film as Cu diffusion barrier on low-k (k=2.5) dielectrics , 2011, 2011 IEEE International Interconnect Technology Conference.

[54]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[55]  K. Banerjee,et al.  Current Status and Future Perspectives of Carbon Nanotube Interconnects , 2008, 2008 8th IEEE Conference on Nanotechnology.