DRC2/CCDC65 is a central hub for assembly of the nexin–dynein regulatory complex and other regulators of ciliary and flagellar motility

DRC2 is a subunit of the nexin–dynein regulatory complex linked to primary ciliary dyskinesia. Little is known about the impact of drc2 mutations on axoneme composition and structure. We used proteomic and structural approaches to reveal that DRC2 coassembles with DRC1 to attach the N-DRC to the A-tubule and mediate interactions with other regulatory structures.

[1]  Gibbons Ir Chemical dissection of cilia. , 1965 .

[2]  I. Gibbons Chemical dissection of cilia. , 1965, Archives de biologie.

[3]  B. Huang,et al.  Temperature-sensitive mutations affecting flagellar assembly and function in Chlamydomonas reinhardtii , 1977, The Journal of cell biology.

[4]  W. Sale,et al.  Direction of active sliding of microtubules in Tetrahymena cilia. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[5]  G. Witman,et al.  Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal components , 1978, The Journal of cell biology.

[6]  G. Piperno,et al.  Paralyzed flagella mutants of Chlamydomonas reinhardtii. Defective for axonemal doublet microtubule arms. , 1979, The Journal of biological chemistry.

[7]  D. Luck,et al.  Suppressor mutations in chlamydomonas reveal a regulatory mechanism for flagellar function , 1982, Cell.

[8]  R. Segal,et al.  Mutant strains of Chlamydomonas reinhardtii that move backwards only , 1984, The Journal of cell biology.

[9]  J. Rosenbaum,et al.  A motile Chlamydomonas flagellar mutant that lacks outer dynein arms , 1985, The Journal of cell biology.

[10]  P. Satir Switching mechanisms in the control of ciliary motility , 1985 .

[11]  G. Witman Isolation of Chlamydomonas flagella and flagellar axonemes. , 1986, Methods in enzymology.

[12]  W. Sale,et al.  Direction of force generated by the inner row of dynein arms on flagellar microtubules , 1987, The Journal of cell biology.

[13]  C. Brokaw,et al.  Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. , 1987, Cell motility and the cytoskeleton.

[14]  E. Kurimoto,et al.  Two types of Chlamydomonas flagellar mutants missing different components of inner-arm dynein , 1991, The Journal of cell biology.

[15]  D. Mastronarde,et al.  Arrangement of inner dynein arms in wild-type and mutant flagella of Chlamydomonas , 1992, The Journal of cell biology.

[16]  W. Sale,et al.  Regulation of dynein-driven microtubule sliding by the radial spokes in flagella. , 1992, Science.

[17]  G. Piperno,et al.  The inner dynein arms I2 interact with a "dynein regulatory complex" in Chlamydomonas flagella , 1992, The Journal of cell biology.

[18]  R. Kamiya,et al.  Isolation of two species of Chlamydomonas reinhardtii flagellar mutants, ida5 and ida6, that lack a newly identified heavy chain of the inner dynein arm. , 1993, Cell structure and function.

[19]  E. O'Toole,et al.  Components of a "dynein regulatory complex" are located at the junction between the radial spokes and the dynein arms in Chlamydomonas flagella , 1994, The Journal of cell biology.

[20]  G. Piperno,et al.  Mutations in the "dynein regulatory complex" alter the ATP-insensitive binding sites for inner arm dyneins in Chlamydomonas axonemes , 1994, The Journal of cell biology.

[21]  J. Salisbury,et al.  Immunofluorescence microscopy of cilia and flagella. , 1995, Methods in cell biology.

[22]  G. Piperno Regulation of dynein activity within Chlamydomonas flagella. , 1995, Cell motility and the cytoskeleton.

[23]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[24]  P. Hegemann,et al.  A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. , 1999, The Plant journal : for cell and molecular biology.

[25]  P. Lefebvre,et al.  The Chlamydomonas MBO2 locus encodes a conserved coiled-coil protein important for flagellar waveform conversion. , 2002, Cell motility and the cytoskeleton.

[26]  Elizabeth F. Smith Regulation of flagellar dynein by the axonemal central apparatus. , 2002, Cell motility and the cytoskeleton.

[27]  J. Donelson,et al.  Trypanin is a cytoskeletal linker protein and is required for cell motility in African trypanosomes , 2002, The Journal of cell biology.

[28]  M. Porter,et al.  A subunit of the dynein regulatory complex in Chlamydomonas is a homologue of a growth arrest–specific gene product , 2003, The Journal of cell biology.

[29]  M. Hirono,et al.  Rib72, a Conserved Protein Associated with the Ribbon Compartment of Flagellar A-microtubules and Potentially Involved in the Linkage between Outer Doublet Microtubules* , 2003, The Journal of Biological Chemistry.

[30]  R. Kamiya,et al.  A tektin homologue is decreased in chlamydomonas mutants lacking an axonemal inner-arm dynein. , 2004, Molecular biology of the cell.

[31]  N. Iguchi,et al.  Mice Deficient in the Axonemal Protein Tektin-t Exhibit Male Infertility and Immotile-Cilium Syndrome Due to Impaired Inner Arm Dynein Function , 2004, Molecular and Cellular Biology.

[32]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[33]  Pinfen Yang,et al.  The radial spokes and central apparatus: mechano-chemical transducers that regulate flagellar motility. , 2004, Cell motility and the cytoskeleton.

[34]  Tanya M. Teslovich,et al.  Comparative Genomics Identifies a Flagellar and Basal Body Proteome that Includes the BBS5 Human Disease Gene , 2004, Cell.

[35]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[36]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[37]  M. Porter,et al.  The FLA3 KAP subunit is required for localization of kinesin-2 to the site of flagellar assembly and processive anterograde intraflagellar transport. , 2005, Molecular biology of the cell.

[38]  G. Pazour,et al.  Proteomic analysis of a eukaryotic cilium , 2005, The Journal of cell biology.

[39]  J. McIntosh,et al.  The Molecular Architecture of Axonemes Revealed by Cryoelectron Tomography , 2006, Science.

[40]  D. Nicastro Cryo-electron microscope tomography to study axonemal organization. , 2009, Methods in cell biology.

[41]  K. Gull,et al.  Combining RNA Interference Mutants and Comparative Proteomics to Identify Protein Components and Dependences in a Eukaryotic Flagellum , 2009, Journal of Biological Chemistry.

[42]  S. Fraser,et al.  The dynein regulatory complex is required for ciliary motility and otolith biogenesis in the inner ear , 2009, Nature.

[43]  W. Sale,et al.  IC138 defines a subdomain at the base of the I1 dynein that regulates microtubule sliding and flagellar motility. , 2009, Molecular biology of the cell.

[44]  D. Nicastro,et al.  The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella , 2009, The Journal of cell biology.

[45]  Jeffrey W. Smith,et al.  Mass Spectrometry-Based Label-Free Quantitative Proteomics , 2009, Journal of biomedicine & biotechnology.

[46]  K. Hill,et al.  CMF70 is a subunit of the dynein regulatory complex , 2010, Journal of Cell Science.

[47]  D. Nicastro,et al.  The CSC is required for complete radial spoke assembly and wild-type ciliary motility , 2011, Molecular biology of the cell.

[48]  Deborah A. Cochran,et al.  Regulation of flagellar motility by the conserved flagellar protein CG34110/Ccdc135/FAP50 , 2011, Molecular biology of the cell.

[49]  John M Heumann,et al.  Clustering and variance maps for cryo-electron tomography using wedge-masked differences. , 2011, Journal of structural biology.

[50]  D. Nicastro,et al.  Building Blocks of the Nexin-Dynein Regulatory Complex in Chlamydomonas Flagella* , 2011, The Journal of Biological Chemistry.

[51]  B. Engel,et al.  Structural Studies of Ciliary Components , 2012, Journal of molecular biology.

[52]  K. Bui,et al.  Polarity and asymmetry in the arrangement of dynein and related structures in the Chlamydomonas axoneme , 2012, Journal of Cell Biology.

[53]  J. Rosenbaum,et al.  The versatile molecular complex component LC8 promotes several distinct steps of flagellar assembly , 2012, The Journal of cell biology.

[54]  D. Nicastro,et al.  The structural heterogeneity of radial spokes in cilia and flagella is conserved , 2012, Cytoskeleton.

[55]  D. Nicastro,et al.  The CSC connects three major axonemal complexes involved in dynein regulation , 2012, Molecular biology of the cell.

[56]  J. Yates,et al.  Proteomic Analysis of Mammalian Primary Cilia , 2012, Current Biology.

[57]  D. Nicastro,et al.  Cryoelectron tomography reveals doublet-specific structures and unique interactions in the I1 dynein , 2012, Proceedings of the National Academy of Sciences.

[58]  J. Hewitt,et al.  Re-evaluation of the Role of Calcium Homeostasis Endoplasmic Reticulum Protein (CHERP) in Cellular Calcium Signaling* , 2012, The Journal of Biological Chemistry.

[59]  J. Schimenti,et al.  IQ Motif-Containing G (Iqcg) Is Required for Mouse Spermiogenesis , 2013, G3: Genes, Genomes, Genetics.

[60]  Hoangkim Nguyen,et al.  CMF22 Is a Broadly Conserved Axonemal Protein and Is Required for Propulsive Motility in Trypanosoma brucei , 2013, Eukaryotic Cell.

[61]  P. Kner,et al.  A Differential Cargo-Loading Model of Ciliary Length Regulation by IFT , 2013, Current Biology.

[62]  W. Sale,et al.  The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes , 2013, Molecular biology of the cell.

[63]  S. Lindberg,et al.  The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans , 2013, Nature Genetics.

[64]  W. Sale,et al.  The MIA complex is a conserved and novel dynein regulator essential for normal ciliary motility , 2013, The Journal of cell biology.

[65]  M. Rosenfeld,et al.  Zebrafish Ciliopathy Screen Plus Human Mutational Analysis Identifies C21orf59 and CCDC65 Defects as Causing Primary Ciliary Dyskinesia. , 2013, American journal of human genetics.

[66]  Kate S. Wilson,et al.  CCDC65 Mutation Causes Primary Ciliary Dyskinesia with Normal Ultrastructure and Hyperkinetic Cilia , 2013, PloS one.

[67]  M. Kikkawa,et al.  A molecular ruler determines the repeat length in eukaryotic cilia and flagella , 2014, Science.

[68]  Ping Liu,et al.  Iqcg Is Essential for Sperm Flagellum Formation in Mice , 2014, PloS one.

[69]  W. Marshall,et al.  FAP20 is an inner junction protein of doublet microtubules essential for both the planar asymmetrical waveform and stability of flagella in Chlamydomonas , 2014, Molecular biology of the cell.

[70]  M. Sanderson,et al.  DRC3 connects the N-DRC to dynein g to regulate flagellar waveform , 2015, Molecular biology of the cell.

[71]  W. Sale,et al.  FAP206 is a microtubule-docking adapter for ciliary radial spoke 2 and dynein c , 2015, Molecular biology of the cell.

[72]  S. Dutcher,et al.  A NIMA-Related Kinase Suppresses the Flagellar Instability Associated with the Loss of Multiple Axonemal Structures , 2015, PLoS genetics.

[73]  H. Omran,et al.  Loss-of-Function GAS8 Mutations Cause Primary Ciliary Dyskinesia and Disrupt the Nexin-Dynein Regulatory Complex. , 2015, American journal of human genetics.

[74]  M. Kikkawa,et al.  Detailed structural and biochemical characterization of the nexin-dynein regulatory complex , 2015, Molecular biology of the cell.

[75]  P. Koprowski,et al.  The CSC proteins FAP61 and FAP251 build the basal substructures of radial spoke 3 in cilia , 2015, Molecular biology of the cell.

[76]  D. Nicastro,et al.  In Situ Localization of N and C Termini of Subunits of the Flagellar Nexin-Dynein Regulatory Complex (N-DRC) Using SNAP Tag and Cryo-electron Tomography* , 2015, The Journal of Biological Chemistry.

[77]  D. Beier,et al.  Mutations in Dnaaf1 and Lrrc48 Cause Hydrocephalus, Laterality Defects, and Sinusitis in Mice , 2016, G3: Genes, Genomes, Genetics.

[78]  M. Porter,et al.  The role of the dynein light intermediate chain in retrograde IFT and flagellar function in Chlamydomonas , 2016, Molecular biology of the cell.

[79]  C. Antignac,et al.  Mutation of Growth Arrest Specific 8 Reveals a Role in Motile Cilia Function and Human Disease , 2016, PLoS genetics.

[80]  Kate S. Wilson,et al.  Flexural Rigidity and Shear Stiffness of Flagella Estimated from Induced Bends and Counterbends. , 2016, Biophysical journal.

[81]  S. Amselem,et al.  Mutations in GAS8, a Gene Encoding a Nexin‐Dynein Regulatory Complex Subunit, Cause Primary Ciliary Dyskinesia with Axonemal Disorganization , 2016, Human mutation.

[82]  W. Sale,et al.  The nexin link and B‐tubule glutamylation maintain the alignment of outer doublets in the ciliary axoneme , 2016, Cytoskeleton.

[83]  W. Sale,et al.  Chlamydomonas DYX1C1/PF23 is essential for axonemal assembly and proper morphology of inner dynein arms , 2017, PLoS genetics.

[84]  L. Ostrowski,et al.  Quantitative Proteomic Analysis of Human Airway Cilia Identifies Previously Uncharacterized Proteins of High Abundance. , 2017, Journal of proteome research.

[85]  J. D'Souza,et al.  Defects in the ratio of the dynein isoform, DHC11 in the long-flagella mutants of Chlamydomonas reinhardtii. , 2017, Biochemical and biophysical research communications.

[86]  J. Reiter,et al.  Genes and molecular pathways underpinning ciliopathies , 2017, Nature Reviews Molecular Cell Biology.

[87]  J. Thompson,et al.  Insights into Ciliary Genes and Evolution from Multi-Level Phylogenetic Profiling , 2017, Molecular biology and evolution.

[88]  R. Ramirez-Solis,et al.  TCTE1 is a conserved component of the dynein regulatory complex and is required for motility and metabolism in mouse spermatozoa , 2017, Proceedings of the National Academy of Sciences.

[89]  E. Valente,et al.  Motile and non‐motile cilia in human pathology: from function to phenotypes , 2017, The Journal of pathology.

[90]  M. Leigh,et al.  Value of transmission electron microscopy for primary ciliary dyskinesia diagnosis in the era of molecular medicine: Genetic defects with normal and non-diagnostic ciliary ultrastructure , 2017, Ultrastructural pathology.