Wavelength-multiplexed distribution of highly entangled photon-pairs over optical fiber.

We report the first experimental demonstration of wavelength-multiplexed entanglement distribution over optical fiber. Forty-four channels of polarization-entangled photon-pairs were produced from a single pulse-pumped, short periodically-poled lithium niobate waveguide and distributed over 10 km of dispersion-shifted optical fiber. Entanglement fidelities of the distributed photon-pairs exceeded 0.86 for all selected channels.

[1]  Akio Yoshizawa,et al.  Distribution of polarization-entangled photonpairs produced via spontaneous parametric down-conversion within a local-area fiber network: theoretical model and experiment. , 2008, Optics express.

[2]  Akio Yoshizawa,et al.  Broadband source of telecom-band polarization-entangled photon-pairs for wavelength-multiplexed entanglement distribution. , 2008, Optics express.

[3]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[4]  Kyo Inoue,et al.  Generation of Quantum-Correlated Photon Pairs in Optical Fiber: Influence of Spontaneous Raman Scattering , 2004 .

[5]  H. Tsuchida,et al.  Generation of polarization-entangled photon pairs in 1550nm band by a fiber-optic two-photon interferometer , 2004 .

[6]  T Honjo,et al.  Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors. , 2007, Optics express.

[7]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[8]  Jie Chen,et al.  Active polarization stabilization in optical fibers suitable for quantum key distribution. , 2007, Optics express.

[9]  W Tittel,et al.  Distribution of time-bin entangled qubits over 50 km of optical fiber. , 2004, Physical review letters.

[10]  Kyo Inoue,et al.  Quantum secret sharing based on modulated high-dimensional time-bin entanglement , 2006 .

[11]  Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide. , 2008, Optics express.

[12]  N. Gisin,et al.  Long-distance entanglement-based quantum key distribution , 2000, quant-ph/0008039.

[13]  J. P. von der Weid,et al.  Full polarization control for fiber optical quantum communication systems using polarization encoding. , 2008, Optics express.

[14]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[15]  Paul L Voss,et al.  Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. , 2004, Physical review letters.

[16]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[17]  O. Okunev,et al.  Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range , 2002 .

[18]  H. Takesue Long-distance distribution of time-bin entanglement generated in a cooled fiber. , 2005, Optics express.

[19]  J. Cirac,et al.  Distributed quantum computation over noisy channels , 1998, quant-ph/9803017.

[20]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[21]  Kyo Inoue,et al.  Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop , 2004 .

[22]  Sae Woo Nam,et al.  Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors. , 2008, Optics express.

[23]  P. Kumar,et al.  Distribution of Fiber-Generated Polarization Entangled Photon-Pairs over 100 km of Standard Fiber in OC-192 WDM Environment , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.