Application of CFD Model for Inlet Flow Region of 17×17 Fuel Assembly
暂无分享,去创建一个
A numerical investigation was performed to study the variation in axial and lateral velocity profiles occurring downstream of the inlet nozzle of a typical Westinghouse 17×17 PWR fuel assembly. A Computational Fluid Dynamic (CFD) model was developed with commercial CFD software. The model comprised the lower region of the fuel assembly, including: the Debris Filter Bottom Nozzle (DFBN), P-grid, Bottom Inconel grid, one and half grid span, as well as the lower core plate hole. The purpose of the study was to obtain insight into the flow redistribution resulting from the interaction of the jet arising from the lower core plate hole and the fuel assembly structure. In particular the axial and lateral velocities before and after the nozzle were studied. The results, axial and lateral velocity contours, streamlines and maximum axial and lateral velocity distributions at various elevations are presented and discussed in relation to the potential risk of high turbulent excitation over the rod and the resulting rod-to-grid fretting-wear damage. The CFD model results indicated that the large jet flows from the lower core plate are effectively dissipated by DFBN nozzle and the grids components of the fuel assembly. The breakup of the large jets in the DFBN and the lower grids helps to reduce the steep velocity gradients and thus the rod vibration and fretting-wear risk in the lower part of the fuel assembly. The presented CFD model is one step towards developing advanced tools that can be used to confirm and evaluate the effect of complex PWR structures on flow distribution. In the future the presented model could be integrated in a larger CFD model involving several fuel assemblies for evaluating the lateral velocities generated due to the non-uniform inlet conditions into the various fuel assemblies.Copyright © 2006 by ASME