Chiral supramolecular self-assembly of rubrene.

Large area chiral supramolecular self-assembly of rubrene has been achieved on Au(111) surface at room temperature. The basic building block of such self-assembled layers consists of two double-layered Y-shape supramolecular structures containing eight twisted rubrene molecules. Chirality is maintained and transferred from the bottom layer to the top layer in the successive molecular layers for up to five layers. Such chiral multilayers can be potential candidates in enantioselective catalysis and chiral separations.

[1]  Hongming Wang,et al.  Conformation-induced self-assembly of rubrene on Au(111) surface , 2009 .

[2]  W. Schneider,et al.  Three-dimensional chirality transfer in rubrene multilayer islands on Au(111). , 2009, Journal of Physical Chemistry B.

[3]  R. Raval Chiral expression from molecular assemblies at metal surfaces: insights from surface science techniques. , 2009, Chemical Society reviews.

[4]  S. De Feyter,et al.  Two-dimensional chirality at liquid-solid interfaces. , 2009, Chemical Society reviews.

[5]  F. Rosei,et al.  Self-assembly of rubrene on Cu(111) , 2008, Nanotechnology.

[6]  P. Gamez,et al.  Experimental Observation of Supramolecular Carbonyl-π/π-π/ π-carbonyl and Carbonyl-π/π-π/π-anion Assemblies Supported by Theoretical Studies , 2008 .

[7]  S. Jenkins,et al.  Beyond the surface atlas: A roadmap and gazetteer for surface symmetry and structure , 2007 .

[8]  Lei Liu,et al.  Conformational degree and molecular orientation in rubrene film by in situ x-ray absorption spectroscopy , 2007 .

[9]  Chun-Sing Lee,et al.  Doping-induced efficiency enhancement in organic photovoltaic devices , 2007 .

[10]  W. Schneider,et al.  Probing and locally modifying the intrinsic electronic structure and the conformation of supported nonplanar molecules , 2006 .

[11]  D. Käfer,et al.  Role of molecular conformations in rubrene thin film growth. , 2005, Physical review letters.

[12]  S. M. Barlow,et al.  Polymorphism in supramolecular chiral structures of R- and S-alanine on Cu(1 1 0) , 2005 .

[13]  W. Schneider,et al.  Conservation of chirality in a hierarchical supramolecular self-assembled structure with pentagonal symmetry. , 2005, Angewandte Chemie.

[14]  J. Rogers,et al.  Intrinsic charge transport on the surface of organic semiconductors. , 2004, Physical review letters.

[15]  D. Sholl,et al.  Chiral selection on inorganic crystalline surfaces , 2003, Nature materials.

[16]  N. V. Richardson,et al.  Enantiomeric interactions between nucleic acid bases and amino acids on solid surfaces , 2003, Nature materials.

[17]  Hany Aziz,et al.  Study of organic light emitting devices with a 5,6,11,12-tetraphenylnaphthacene (rubrene)-doped hole transport layer , 2002 .

[18]  R. Fasel,et al.  Orientation of chiral heptahelicene C30H18 on copper surfaces: An x-ray photoelectron diffraction study , 2001 .

[19]  G. Attard Electrochemical Studies of Enantioselectivity at Chiral Metal Surfaces , 2001 .

[20]  R. Raval,et al.  Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules , 2000, Nature.

[21]  R. Raval,et al.  Creating Chiral Surfaces for Enantioselective Heterogeneous Catalysis: R,R-Tartaric Acid on Cu(110) , 1999 .

[22]  R. Car,et al.  Two-Dimensional Self-Assembly of Supramolecular Clusters and Chains , 1999 .

[23]  K. Kern,et al.  Direct observation of surface diffusion of large organic molecules at metal surfaces: PVBA on Pd(110) , 1999 .

[24]  D. Moffatt,et al.  Determination of the absolute chirality of individual adsorbed molecules using the scanning tunnelling microscope , 1998, Nature.

[25]  C. Mcfadden,et al.  Adsorption of Chiral Alcohols on “Chiral” Metal Surfaces , 1996 .