Low Power Motion Detection with Low Spatial and Temporal Resolution for CMOS Image Sensor

Video surveillance aims at detecting unexpected individuals or objects intrusion. When no motion is observed, common motion detection systems induce huge power consumption, regardless of the scene activity. This paper presents algorithms for low power motion detection, and their possible implementation. The main interest is that they are able to adapt the sensor's acuity according to the scene activity. Relevant motion information can be extracted from images with lowered spatial and temporal resolution, with specific algorithms. By reducing the amount of data to analyze and spatial and temporal redundancy, a drastic reduction of power consumption can be achieved.

[1]  Ralph Etienne-Cummings,et al.  Vision chip for navigating and controlling Micro Unmanned Aerial Vehicles , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[2]  Derek Abbott,et al.  An insect vision-based motion detection chip , 1997, IEEE J. Solid State Circuits.

[3]  Orly Yadid-Pecht,et al.  Adaptive multiple resolution CMOS active pixel sensor , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[4]  Dan I. Moldovan,et al.  Partitioning and Mapping Algorithms into Fixed Size Systolic Arrays , 1986, IEEE Transactions on Computers.

[5]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[6]  P. Quinton Automatic synthesis of systolic arrays from uniform recurrent equations , 1984, ISCA 1984.

[7]  Patrick Crowley,et al.  Exploiting coarse-grained parallelism to accelerate protein motif finding with a network processor , 2005, 14th International Conference on Parallel Architectures and Compilation Techniques (PACT'05).

[8]  D. Haussler,et al.  Hidden Markov models in computational biology. Applications to protein modeling. , 1993, Journal of molecular biology.

[9]  Bertil Schmidt,et al.  High Performance Database Searching with HMMer on FPGAs , 2007, 2007 IEEE International Parallel and Distributed Processing Symposium.

[10]  Bertil Schmidt,et al.  Accelerating the Viterbi Algorithm for Profile Hidden Markov Models Using Reconfigurable Hardware , 2006, International Conference on Computational Science.

[11]  Susmita Sur-Kolay,et al.  Combined instruction and loop parallelism in array synthesis for FPGAs , 2001, International Symposium on System Synthesis (IEEE Cat. No.01EX526).

[12]  Paul L. McCarley,et al.  Large-format variable spatial acuity superpixel imaging: visible and infrared systems applications , 2004, SPIE Defense + Commercial Sensing.

[13]  Mohamad Sawan,et al.  Variable resolution CMOS current mode active pixel sensor , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[14]  Frédéric Vivien,et al.  Constructing and exploiting linear schedules with prescribed parallelism , 2002, TODE.

[15]  Ralph Etienne-Cummings,et al.  Normal optical flow measurement on CMOS APS imager , 2005 .

[16]  Ralph Etienne-Cummings,et al.  Normal Optical Flow measurement on a CMOS APS imager , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[17]  Larry H. Matthies,et al.  Multiresolution image sensor , 1997, IEEE Trans. Circuits Syst. Video Technol..

[18]  Patrice Quinton,et al.  Hardware synthesis for multi-dimensional time , 2003, Proceedings IEEE International Conference on Application-Specific Systems, Architectures, and Processors. ASAP 2003.

[19]  Jacques-Olivier Klein,et al.  An improved analog computation cell for Paris II, a programmable vision chip , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[20]  Suki Kim,et al.  A CMOS image sensor (CIS) architecture with low power motion detection for portable security camera applications , 2003, IEEE Trans. Consumer Electron..

[21]  FeautrierPaul Some efficient solutions to the affine scheduling problem , 1992 .

[22]  Pat Hanrahan,et al.  ClawHMMER: A Streaming HMMer-Search Implementatio , 2005, ACM/IEEE SC 2005 Conference (SC'05).

[23]  Bashar Qudah,et al.  Accelerating the HMMER sequence analysis suite using conventional processors , 2006, 20th International Conference on Advanced Information Networking and Applications - Volume 1 (AINA'06).

[24]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[25]  Brandon Harris,et al.  Accelerator design for protein sequence HMM search , 2006, ICS '06.

[26]  Graham A. Jullien,et al.  A wide dynamic range CMOS active pixel sensor with frame difference , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[27]  Guang Yang,et al.  Dynamically reconfigurable vision with high performance CMOS active pixel sensors (APS) , 2002, Proceedings of IEEE Sensors.

[28]  Paul Feautrier,et al.  Some efficient solutions to the affine scheduling problem. Part II. Multidimensional time , 1992, International Journal of Parallel Programming.