Stochastic fatigue crack growth simulation of interfacial crack in bi-layered FGMs using XIGA

Abstract In this work, extended isogeometric analysis (XIGA) is employed to compute the fatigue life of interfacial edge cracked functionally graded materials (FGMs). The effect of multiple defects (holes, inclusions and minor cracks) on the fatigue life of the interfacial cracked FGM plate is evaluated by XIGA. The bottom layer of the bi-layered plate is made of aluminum alloy while the upper one is made of FGM. The gradation in FGM layer is taken from left to right with 100% aluminum alloy on left and 100% alumina (ceramic) on the right. The material properties in FGM layer vary exponentially from the left (alloy side) to the right (ceramic side). For stochastic fatigue crack growth modeling, the input parameters (fracture toughness, Paris constant, Paris exponent) are generated using a log-normal distribution. Paris law is used to evaluate the fatigue life of the interfacial cracked bi-layered problems. The effect of these input parameters is studied on the fatigue life in detail. The values of stress intensity factors are computed using domain based interaction integral approach. Several interfacial crack bi-layered FGM problems are solved and analyzed by the XIGA.

[1]  Markus J. Buehler,et al.  Coupled continuum and discrete analysis of random heterogeneous materials: Elasticity and fracture , 2014 .

[2]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[3]  T. Belytschko,et al.  X‐FEM in isogeometric analysis for linear fracture mechanics , 2011 .

[4]  N. Valizadeh,et al.  Extended isogeometric analysis for simulation of stationary and propagating cracks , 2012 .

[5]  B. K. Mishra,et al.  Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM , 2013 .

[6]  Bijay K. Mishra,et al.  Evaluation of mixed mode stress intensity factors for interface cracks using EFGM , 2011 .

[7]  Ibrahim Zeid,et al.  Mastering CAD/CAM , 2004 .

[8]  T. Rabczuk,et al.  Phase-field modeling of fracture in linear thin shells , 2014 .

[9]  T. Rabczuk,et al.  Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations , 2014 .

[10]  Lin-zhi Wu,et al.  An interaction integral method for 3D curved cracks in nonhomogeneous materials with complex interfaces , 2010 .

[11]  Timon Rabczuk,et al.  Extended isogeometric analysis for material interface problems , 2015 .

[12]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[13]  Lin-zhi Wu,et al.  Interaction integral method for the interfacial fracture problems of two nonhomogeneous materials , 2010 .

[14]  H. Nguyen-Dang,et al.  Multiple-cracked fatigue crack growth by BEM , 1995 .

[15]  T. Rabczuk,et al.  A Meshfree Method based on the Local Partition of Unity for Cohesive Cracks , 2007 .

[16]  Jeong-Ho Kim,et al.  Interaction integrals for thermal fracture of functionally graded materials , 2008 .

[17]  T. Belytschko,et al.  A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .

[18]  Bhushan Lal Karihaloo,et al.  XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi‐materials , 2004 .

[19]  Zhigang Suo,et al.  Partition of unity enrichment for bimaterial interface cracks , 2004 .

[20]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[21]  K. Raveendran,et al.  Effective fracture toughness of composites , 1991 .

[22]  W. Tuan,et al.  Poisson's ratio of two-phase composites , 2005 .

[23]  I. Singh,et al.  Fatigue crack growth analysis of a homogeneous plate in the presence of multiple defects using extended isogeometric analysis , 2015 .

[24]  D. McDowell,et al.  Microstructure-sensitive computational modeling of fatigue crack formation , 2010 .

[25]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[26]  Xiangqiao Yan,et al.  A boundary element modeling of fatigue crack growth in a plane elastic plate , 2006 .

[27]  Li Zhang,et al.  An interaction energy integral method for nonhomogeneous materials with interfaces under thermal loading , 2012 .

[28]  T. Belytschko,et al.  A three dimensional large deformation meshfree method for arbitrary evolving cracks , 2007 .

[29]  Toru Ikeda,et al.  Stress intensity factor analysis of a three-dimensional interface crack between dissimilar anisotropic materials , 2007 .

[30]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[31]  Indra Vir Singh,et al.  Numerical simulation of bi-material interfacial cracks using EFGM and XFEM , 2012 .

[32]  Markus Kästner,et al.  Development of a quadratic finite element formulation based on the XFEM and NURBS , 2011 .

[33]  B. K. Mishra,et al.  A modified intrinsic enriched element free Galerkin method for multiple cracks simulation , 2010 .

[34]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[35]  Charles E. Augarde,et al.  Fracture modeling using meshless methods and level sets in 3D: Framework and modeling , 2012 .

[36]  A. Palazoglu,et al.  Nanoscale heterogeneity promotes energy dissipation in bone. , 2007, Nature materials.

[37]  Chongmin Song,et al.  Probabilistic fracture mechanics by using Monte Carlo simulation and the scaled boundary finite element method , 2011 .

[38]  Wen-Fang Wu,et al.  A study of stochastic fatigue crack growth modeling through experimental data , 2003 .

[39]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[40]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .