Rheological modelling on semi-solid metal alloys and simulation of thixocasting processes
暂无分享,去创建一个
Abstract Semi-solid metal alloys, as used in thixoforming, have a special microstructure of globular grains suspended in a liquid metal matrix. The material under investigation is a tin–lead alloy (Sn–15% Pb) which exhibits a similar microstructure as aluminum alloys. The experiments were performed with concentric cylinder rheometers. Initially, the liquid alloy is cooled down to the semi-solid range under constant shearing and then kept under isothermal conditions for further experimentation. The microstructure is characterized in dependence of the shearing time. The rheological techniques consisted of step change of shear rate and shear stress ramp experiments for different solid fractions (40–50%). Based on the experimental data a single phase model has been derived, where the semi-solid alloy is regarded as a homogeneous material with thixotropic properties and the microstructure is characterized by a structural parameter. The model consists of two parts: the equation of state, including a finite yield stress, and a rate equation for the structural parameter. The model equations are employed into numerical software and used for the simulation of a characteristic thixocasting process. The results are compared to real experiments.
[1] Howard A. Barnes,et al. A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure , 1995 .
[2] R. Mehrabian,et al. The rheology of a partially solid alloy , 1976 .
[3] H. Atkinson,et al. Anomalous rheological behaviour of semi-solid alloy slurries at low shear rates , 1997 .