Personalized Recommendation via Integrated Diffusion on User-Item-Tag Tripartite Graphs

Personalized recommender systems are confronting great challenges of accuracy, diversification and novelty, especially when the data set is sparse and lacks accessorial information, such as user profiles, item attributes and explicit ratings. Collaborative tags contain rich information about personalized preferences and item contents, and are therefore potential to help in providing better recommendations. In this article, we propose a recommendation algorithm based on an integrated diffusion on user–item–tag tripartite graphs. We use three benchmark data sets, Del.icio.us, MovieLens and BibSonomy, to evaluate our algorithm. Experimental results demonstrate that the usage of tag information can significantly improve accuracy, diversification and novelty of recommendations.

[1]  Hsinchun Chen,et al.  Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering , 2004, TOIS.

[2]  M. Newman,et al.  Hierarchical structure and the prediction of missing links in networks , 2008, Nature.

[3]  Bao-qun Yin,et al.  Power-law strength-degree correlation from resource-allocation dynamics on weighted networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[5]  Lars Schmidt-Thieme,et al.  Attribute-aware Collaborative Filtering , 2005, GfKl.

[6]  Yi-Cheng Zhang,et al.  Bipartite network projection and personal recommendation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Vittorio Loreto,et al.  Collaborative Tagging and Semiotic Dynamics , 2006, ArXiv.

[8]  Yi-Cheng Zhang,et al.  Effect of initial configuration on network-based recommendation , 2007, 0711.2506.

[9]  Yun Chi,et al.  Information flow modeling based on diffusion rate for prediction and ranking , 2007, WWW '07.

[10]  Gerhard Weikum,et al.  Efficient top-k querying over social-tagging networks , 2008, SIGIR '08.

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[13]  Thomas Hofmann,et al.  Probabilistic latent semantic indexing , 1999, SIGIR '99.

[14]  Gobinda G. Chowdhury,et al.  Spinning the Semantic Web: Bringing the World Wide Web to Its Full Potential , 2004 .

[15]  Andreas Hotho,et al.  BibSonomy: a social bookmark and publication sharing system , 2006 .

[16]  Vittorio Loreto,et al.  Semiotic dynamics and collaborative tagging , 2006, Proceedings of the National Academy of Sciences.

[17]  Paul Resnick,et al.  Recommender systems , 1997, CACM.

[18]  Linyuan Lu,et al.  Link Prediction in Complex Networks: A Survey , 2010, ArXiv.

[19]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[20]  Carl Bedingfield Review of "Spinning the semantic web: Bringing the world wide web to its full potential" edited by Dieter Fensel, James Hendler, Henry Lieberman, and Wolfgang Wahlster, The MIT press , 2003, UBIQ.

[21]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[22]  Sean M. McNee,et al.  Improving recommendation lists through topic diversification , 2005, WWW '05.

[23]  Linyuan Lü,et al.  Empirical analysis on a keyword-based semantic system , 2008, 0801.4163.

[24]  Tao Zhou,et al.  Evolution of the Internet and its cores , 2008 .

[25]  Tao Li,et al.  Recommendation model based on opinion diffusion , 2007, ArXiv.

[26]  Kamal Ali,et al.  TiVo: making show recommendations using a distributed collaborative filtering architecture , 2004, KDD.

[27]  Shinsuke Nakajima,et al.  Tag-Based Contextual Collaborative Filtering , 2007 .

[28]  John Riedl,et al.  E-Commerce Recommendation Applications , 2004, Data Mining and Knowledge Discovery.

[29]  Paul Resnick,et al.  Reputation systems , 2000, CACM.

[30]  Bernardo A. Huberman,et al.  Usage patterns of collaborative tagging systems , 2006, J. Inf. Sci..

[31]  Gilad Mishne,et al.  AutoTag: a collaborative approach to automated tag assignment for weblog posts , 2006, WWW '06.

[32]  Yi-Cheng Zhang,et al.  Information filtering via self-consistent refinement , 2008, 0802.3748.

[33]  Lars Schmidt-Thieme,et al.  Tag-aware recommender systems by fusion of collaborative filtering algorithms , 2008, SAC '08.

[34]  Andreas Hotho,et al.  Information Retrieval in Folksonomies: Search and Ranking , 2006, ESWC.

[35]  Michael J. Pazzani,et al.  Content-Based Recommendation Systems , 2007, The Adaptive Web.

[36]  Roelof van Zwol,et al.  Flickr tag recommendation based on collective knowledge , 2008, WWW.

[37]  H. J. Mclaughlin,et al.  Learn , 2002 .

[38]  J. Hanley,et al.  The meaning and use of the area under a receiver operating characteristic (ROC) curve. , 1982, Radiology.

[39]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[40]  Yi-Cheng Zhang,et al.  Heat conduction process on community networks as a recommendation model. , 2007, Physical review letters.

[41]  D. Vernon Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.

[42]  Jian-Guo Liu,et al.  Improved collaborative filtering algorithm via information transformation , 2007, 0712.3807.

[43]  James Bennett,et al.  The Netflix Prize , 2007 .

[44]  Przemyslaw Kazienko,et al.  AdROSA - Adaptive personalization of web advertising , 2007, Inf. Sci..