Hybrid ADMM: a unifying and fast approach to decentralized optimization

The present work introduces the hybrid consensus alternating direction method of multipliers (H-CADMM), a novel framework for optimization over networks which unifies existing distributed optimization approaches, including the centralized and the decentralized consensus ADMM. H-CADMM provides a flexible tool that leverages the underlying graph topology in order to achieve a desirable sweet spot between node-to-node communication overhead and rate of convergence—thereby alleviating known limitations of both C-CADMM and D-CADMM. A rigorous analysis of the novel method establishes linear convergence rate and also guides the choice of parameters to optimize this rate. The novel hybrid update rules of H-CADMM lend themselves to “in-network acceleration” that is shown to effect considerable—and essentially “free-of-charge”—performance boost over the fully decentralized ADMM. Comprehensive numerical tests validate the analysis and showcase the potential of the method in tackling efficiently, widely useful learning tasks.

[1]  John D. Garofalakis,et al.  On the Multi-Level Near Complete Decomposability of a Class of Multiprocessing Systems , 2016, PCI.

[2]  Daniel Boley,et al.  Local Linear Convergence of the Alternating Direction Method of Multipliers on Quadratic or Linear Programs , 2013, SIAM J. Optim..

[3]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[4]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[5]  R. Murray,et al.  Decentralized Multi-Agent Optimization via Dual Decomposition , 2011 .

[6]  Zhi-Quan Luo,et al.  On the linear convergence of the alternating direction method of multipliers , 2012, Mathematical Programming.

[7]  Martin J. Wainwright,et al.  Dual Averaging for Distributed Optimization: Convergence Analysis and Network Scaling , 2010, IEEE Transactions on Automatic Control.

[8]  Asuman E. Ozdaglar,et al.  Constrained Consensus and Optimization in Multi-Agent Networks , 2008, IEEE Transactions on Automatic Control.

[9]  Georgios B. Giannakis,et al.  Distributed consensus-based demodulation: algorithms and error analysis , 2010, IEEE Transactions on Wireless Communications.

[10]  H. Vincent Poor,et al.  A Collaborative Training Algorithm for Distributed Learning , 2009, IEEE Transactions on Information Theory.

[11]  Qing Ling,et al.  Decentralized learning for wireless communications and networking , 2015, ArXiv.

[12]  Georgios B. Giannakis,et al.  Distributed Clustering Using Wireless Sensor Networks , 2011, IEEE Journal of Selected Topics in Signal Processing.

[13]  Qing Ling,et al.  On the Linear Convergence of the ADMM in Decentralized Consensus Optimization , 2013, IEEE Transactions on Signal Processing.

[14]  R. Olfati-Saber,et al.  Consensus Filters for Sensor Networks and Distributed Sensor Fusion , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[15]  Angelia Nedic,et al.  Distributed Stochastic Subgradient Projection Algorithms for Convex Optimization , 2008, J. Optim. Theory Appl..

[16]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[17]  Gonzalo Mateos,et al.  Distributed Sparse Linear Regression , 2010, IEEE Transactions on Signal Processing.

[18]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[19]  Michael G. Rabbat,et al.  Distributed strongly convex optimization , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[20]  Qing Ling,et al.  Decentralized Sparse Signal Recovery for Compressive Sleeping Wireless Sensor Networks , 2010, IEEE Transactions on Signal Processing.

[21]  Richard G. Baraniuk,et al.  Fast Alternating Direction Optimization Methods , 2014, SIAM J. Imaging Sci..

[22]  Emiliano Dall'Anese,et al.  Fast Consensus by the Alternating Direction Multipliers Method , 2011, IEEE Transactions on Signal Processing.

[23]  R. Olfati-Saber,et al.  Distributed Kalman Filter with Embedded Consensus Filters , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[24]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[25]  Georgios B. Giannakis,et al.  Distributed Robust Power System State Estimation , 2012, IEEE Transactions on Power Systems.

[26]  Qing Ling,et al.  Communication-efficient weighted ADMM for decentralized network optimization , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[27]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[28]  Asuman E. Ozdaglar,et al.  Convergence Rate of Distributed ADMM Over Networks , 2016, IEEE Transactions on Automatic Control.

[29]  Wei Ren,et al.  Consensus based formation control strategies for multi-vehicle systems , 2006, 2006 American Control Conference.

[30]  Michael G. Rabbat,et al.  Communication/Computation Tradeoffs in Consensus-Based Distributed Optimization , 2012, NIPS.

[31]  Asuman E. Ozdaglar,et al.  Distributed Subgradient Methods for Multi-Agent Optimization , 2009, IEEE Transactions on Automatic Control.

[32]  Georgios B. Giannakis,et al.  Fast Decentralized Learning Via Hybrid Consensus Admm , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[33]  Wei Ren,et al.  Information consensus in multivehicle cooperative control , 2007, IEEE Control Systems.

[34]  Stephen P. Boyd,et al.  A scheme for robust distributed sensor fusion based on average consensus , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[35]  Alejandro Ribeiro,et al.  Consensus in Ad Hoc WSNs With Noisy Links—Part I: Distributed Estimation of Deterministic Signals , 2008, IEEE Transactions on Signal Processing.

[36]  Soummya Kar,et al.  Gossip Algorithms for Distributed Signal Processing , 2010, Proceedings of the IEEE.

[37]  Gonzalo Mateos,et al.  Group-Lasso on Splines for Spectrum Cartography , 2010, IEEE Transactions on Signal Processing.

[38]  John N. Tsitsiklis,et al.  Problems in decentralized decision making and computation , 1984 .

[39]  Pascal Bianchi,et al.  Explicit Convergence Rate of a Distributed Alternating Direction Method of Multipliers , 2013, IEEE Transactions on Automatic Control.

[40]  Georgios B. Giannakis,et al.  Distributed Spectrum Sensing for Cognitive Radio Networks by Exploiting Sparsity , 2010, IEEE Transactions on Signal Processing.

[41]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .

[42]  Georgios B. Giannakis,et al.  Consensus-Based Distributed Support Vector Machines , 2010, J. Mach. Learn. Res..

[43]  Wotao Yin,et al.  On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers , 2016, J. Sci. Comput..

[44]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..