Global cloud‐system‐resolving model NICAM successfully simulated the lifecycles of two real tropical cyclones

[1] The increasing capability of high-end computers allows numerical simulations with horizontal resolutions high enough to resolve cloud systems in a global model. In this paper, initial results from the global Nonhydrostatic ICosahedral Atmospheric Model (NICAM) are highlighted to demonstrate the beginning of a potentially new era for weather and climate predictions with global cloud-system-resolving models. The NICAM simulation with a horizontal resolution of about 7 km successfully reproduced the lifecycles of two real tropical cyclones that formed in Indian Ocean in the austral summer 2006. Initialized with the atmospheric conditions 1-2 weeks before the cyclones genesis, the model captured reasonably not only the timing of the observed cyclone geneses but also their motions and mesoscale structures. The model provides a high temporal/spatial resolution dataset for detailed studies of mesoscale aspects of tropical cyclone genesis. These promising results suggest the predictability of tropical cyclones by high-resolution global cloud-system-resolving models.