Contacting self-ordered molecular wires by nanostencil lithography

The authors grew self-ordered meso-(4-cyanophenyl)-substituted Zn(II) porphyrin molecular wires on thin epitaxial NaCl(001) layers on top of the GaAs substrates under ultrahigh vacuum (UHV) conditions. Molecules assembled to one- and two-dimensional wires with a length of several 10 nm, depending on the substrate conditions. In addition, using the nanostencil tool, a shadow-masking technique in UHV, they evaporated Au and Cr electrodes having lateral dimensions in the 100 nm regime. The resulting combined molecular and metal structures were investigated in situ by means of noncontact atomic force microscopy (NC-AFM) and Kelvin probe force microscopy (KPFM). While NC-AFM enabled control of the tip-sample distance on the very complex and partly insulating surface, KPFM was used to determine and compensate changes in the local contact potential difference.

[1]  F. Diederich,et al.  Cutting and self-healing molecular wires studied by dynamic force microscopy , 2009 .

[2]  S. Kawai,et al.  Determination of effective tip geometries in Kelvin probe force microscopy on thin insulating films on metals , 2009, Nanotechnology.

[3]  E. Meyer,et al.  Molecular assemblies grown between metallic contacts on insulating surfaces , 2009 .

[4]  R. Moeller,et al.  N,N′-dimethylperylene-3,4,9,10-bis(dicarboximide) on alkali halide (001) surfaces , 2008, 0811.3144.

[5]  E. Meyer,et al.  Molecular assemblies on insulating ultrathin films analyzed by nc-AFM and KPFM , 2008 .

[6]  J. Brugger,et al.  Metallic nanowires by full wafer stencil lithography. , 2008, Nano letters.

[7]  F. Diederich,et al.  Nanoscale engineering of molecular porphyrin wires on insulating surfaces. , 2008, Small.

[8]  J. Nogami,et al.  Defining nanoscale metal features on an atomically clean silicon surface with a stencil. , 2008, Nanotechnology.

[9]  L. Eng,et al.  Interface dipole formation of different ZnPcCl8 phases on Ag(111) observed by Kelvin probe force microscopy , 2008, Nanotechnology.

[10]  F. Besenbacher,et al.  Atomic scale Kelvin probe force microscopy studies of the surface potential variations on the TiO2(110) surface. , 2008, Physical review letters.

[11]  M. Aono,et al.  Nanostencil-Fabricated Electrodes for Electron Transport Measurements of Atomically Thin Nanowires in Ultrahigh Vacuum , 2008 .

[12]  Ulrich Zerweck,et al.  The effect of molecular orientation on the potential of porphyrin-metal contacts. , 2008, Nano letters.

[13]  Christian Joachim,et al.  Wetting studies on Au nanowires deposited through nanostencil masks , 2007 .

[14]  T. Kunstmann,et al.  Organic molecular nanowires: N,N′-dimethylperylene-3,4,9,10-bis(dicarboximide) on KBr(001) , 2007 .

[15]  Miko Elwenspoek,et al.  Spreading of thin-film metal patterns deposited on nonplanar surfaces using a shadow mask micromachined in Si (110) , 2007 .

[16]  P. Grutter,et al.  Nanoscale pits as templates for building a molecular device. , 2007, Small.

[17]  R. Allenspach,et al.  Fabrication of ultrathin magnetic structures by nanostencil lithography in dynamic mode , 2007 .

[18]  J. Brugger,et al.  Nanostenciling for fabrication and interconnection of nanopatterns and microelectrodes , 2007 .

[19]  F. Diederich,et al.  Triply fused Zn(II)-porphyrin oligomers: synthesis, properties, and supramolecular interactions with single-walled carbon nanotubes (SWNTs). , 2006, Chemistry.

[20]  Stefan Egger,et al.  A method for combinatorial fabrication and characterization of organic/inorganic thin film devices in UHV. , 2006, Journal of combinatorial chemistry.

[21]  T. Wagner,et al.  Dynamic force microscopy study of 3,4,9,10-perylenetetracarboxylic dianhydride on KBr(001) , 2005 .

[22]  P. Zahl,et al.  All-in-one static and dynamic nanostencil atomic force microscopy/scanning tunneling microscopy system , 2005 .

[23]  Dae-Joon Kang,et al.  Dynamic shadow mask technique: a universal tool for nanoscience. , 2005, Nano letters.

[24]  James Hone,et al.  Simple Fabrication of Molecular Circuits by Shadow Mask Evaporation , 2003 .

[25]  Franz J. Giessibl,et al.  Advances in atomic force microscopy , 2003, cond-mat/0305119.

[26]  P. Korecki,et al.  Structure and electronic properties of ionic nano-layers MBE-grown on III–V semiconductors , 2000 .

[27]  A. Jäger-Waldau,et al.  Kelvin probe force microscopy in ultra high vacuum using amplitude modulation detection of the electrostatic forces , 2000 .

[28]  Daniel C. Ralph,et al.  Nanofabrication using a stencil mask , 1999 .

[29]  J. Gimzewski,et al.  Parallel nanodevice fabrication using a combination of shadow mask and scanning probe methods , 1999 .

[30]  A. Jäger-Waldau,et al.  High-sensitivity quantitative Kelvin probe microscopy by noncontact ultra-high-vacuum atomic force microscopy , 1999 .

[31]  C. Musil,et al.  Direct growth of nanostructures by deposition through an Si3N4 shadow mask , 1999 .

[32]  Y. Ootuka,et al.  A New Fabrication Method for Ultra Small Tunnel Junctions , 1996 .

[33]  S. Hosaka,et al.  Vacuum compatible high‐sensitive Kelvin probe force microscopy , 1996 .

[34]  Henry I. Smith,et al.  Epitaxial grain growth in thin metal films , 1990 .