Ion dynamics in Ba-, Sr-, and Ca-doped La2Mo2O9 from analysis of ac impedance

Conductivity measurement on alkaline earth-doped La2Mo2O9 is well documented, but the ion dynamic study of this material is scarcely reported. Alternating current impedance measurement of Ba-, Sr-, and Ca-doped La2Mo2O9 in the light of ion dynamics has been discussed. The low-temperature regime, 250 °C to 500 °C, has been selected for study on the basis of frequency dispersion of conductivity as well as in terms of modulus formalism. The values of exponential parameter, s, of universal dielectric response and the stretching exponent, β, of Kohlrausch–Williams–Watts relation are evaluated from curve fitting. Scaling behavior of the doped materials has also been investigated. Temperature dependence of such parameters is checked and is interpreted for the plausible mechanism of ionic motion in the material at low temperature.

[1]  Patel,et al.  Fast ionic conduction in Na2S+B2S3 glasses: Compositional contributions to nonexponentiality in conductivity relaxation in the extreme low-alkali-metal limit. , 1992, Physical review. B, Condensed matter.

[2]  R. Mohr,et al.  Dielectric Relaxation in High‐Silica Borosilicate Glasses , 1979 .

[3]  H. S. Maiti,et al.  Ion dynamics study of La2Mo2O9 , 2010 .

[4]  S. Bruque,et al.  Synthesis, Structures, and Thermal Expansion of the La2W2−xMoxO9 Series , 2002 .

[5]  H. S. Maiti,et al.  A potential low-temperature oxide-ion conductor: La2−xBaxMo2O9 , 2004 .

[6]  Patel,et al.  Estimation of the free-charge-carrier concentration in fast-ion conducting Na2S-B2S3 glasses from an analysis of the frequency-dependent conductivity. , 1994, Physical review. B, Condensed matter.

[7]  A. Doi Simulation and scaling of ac conductivities in ion-conducting glasses , 2006 .

[8]  A. K. Jonscher,et al.  The ‘universal’ dielectric response , 1977, Nature.

[9]  Darryl P Almond,et al.  Mobile ion concentrations in solid electrolytes from an analysis of a.c. conductivity , 1983 .

[10]  F. Goutenoire,et al.  Reducibility of fast oxide-ion conductors La2−xRxMo2−yWyO9(R = Nd, Gd) , 2003 .

[11]  Darryl P Almond,et al.  The extraction of ionic conductivities and hopping rates from a.c. conductivity data , 1984 .

[12]  Yvon Laligant,et al.  Designing fast oxide-ion conductors based on La2Mo2O 9 , 2000, Nature.

[13]  S. Redfern,et al.  Thermodynamic nature of and spontaneous strain below the cubic-monoclinic phase transition in La2Mo2O9 , 2004 .

[14]  Jain,et al.  Correlation between the activation enthalpy and Kohlrausch exponent for ionic conductivity in alkali aluminogermanate glasses. , 1989, Physical review. B, Condensed matter.

[15]  S. Stefanovich,et al.  Synthesis and Properties of La2(Mo1 – xMx )2O9 (M = Nb, Ta) Ionic Conductors , 2002 .

[16]  Peter F. Green,et al.  Comparison of KWW and power law analyses of an ion-conducting glass , 1995 .

[17]  R. Retoux,et al.  First Direct Synthesis by High Energy Ball Milling of a New Lanthanum Molybdate , 1997 .

[18]  Scaling and universality of ac conduction in disordered solids , 1999, Physical review letters.

[19]  R. Rendell,et al.  Anomalous isotope-mass effect in lithium borate glasses: Comparison with a unified relaxation model , 1984 .

[20]  David L. Sidebottom,et al.  UNIVERSAL APPROACH FOR SCALING THE AC CONDUCTIVITY IN IONIC GLASSES , 1999 .

[21]  B. Roling,et al.  Dynamics of mobile ions in crystals, glasses and melts , 1998 .

[22]  S. Arakawa,et al.  Characterization of Electrical Properties of Li(FexAl1−x)5O8 Solid Solutions by Impedance Spectroscopy , 2004 .

[23]  I. Kuskovsky,et al.  Universal dielectric response of variously doped CeO 2 ionically conducting ceramics , 1998 .

[24]  H. S. Maiti,et al.  Ion Dynamics Study of Nb + 5-Substituted La2Mo2O9 by AC Impedance Spectroscopy , 2009 .

[25]  Sanz,et al.  Electrical conductivity relaxation and nuclear magnetic resonance of Li conducting Li0.5La0.5TiO3. , 1996, Physical review. B, Condensed matter.

[26]  Q. Fang,et al.  Dielectric relaxation studies of Bi-doping effects on the oxygen-ion diffusion in La2−xBixMo2O9 oxide-ion conductors , 2002 .

[27]  F. Aldinger,et al.  Synthesis and characterization of (La1-xMx)2Mo2O9-δ ; M=Ca2+, Sr2+ or Ba2+ , 2004 .

[28]  B. Roling,et al.  CARRIER CONCENTRATIONS AND RELAXATION SPECTROSCOPY : NEW INFORMATION FROM SCALING PROPERTIES OF CONDUCTIVITY SPECTRA IN IONICALLY CONDUCTING GLASSES , 1997 .

[29]  F. Goutenoire,et al.  Crystal Structure of La2Mo2O9, a New Fast Oxide−Ion Conductor , 2000 .

[30]  J. Hanson,et al.  Lanthanum molybdenum oxide: Low-temperature synthesis and characterization , 2006 .

[31]  S. Krishnaswami,et al.  Composition dependence of frequency power law of ionic conductivity of glasses , 1998 .

[32]  H. S. Maiti,et al.  Nb-Doped La2Mo2O9: A New Material with High Ionic Conductivity , 2005 .

[33]  E. Suard,et al.  Structural and transport characteristics ofthe LAMOX family of fast oxide-ion conductors, based on lanthanum molybdenumoxide La2Mo2O9 , 2001 .

[34]  Steve W. Martin,et al.  Dc and ac conductivity in wide composition range Li2OP2O5 glasses , 1986 .

[35]  B. Roling Scaling properties of the conductivity spectra of glasses and supercooled melts , 1998 .