Effect of Size-Dependent Thermal Instability on Synthesis of Zn2 SiO4-SiOx Core–Shell Nanotube Arrays and Their Cathodoluminescence Properties

[1]  S. Maximenko,et al.  Cathodoluminescence studies of the inhomogeneities in Sn-doped Ga2O3 nanowires. , 2009, Nano letters.

[2]  M. Zacharias,et al.  ZnO-based ternary compound nanotubes and nanowires , 2009 .

[3]  Kai Wang,et al.  Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core/Shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications , 2008 .

[4]  Chenglin Yan,et al.  Formation of Nb2O5 Nanotube Arrays Through Phase Transformation** , 2008 .

[5]  Jun Li,et al.  Effect of Seed Layer on Structural Properties of ZnO Nanorod Arrays Grown by Vapor-Phase Transport , 2008 .

[6]  Jin Yu,et al.  Size-dependent thermal instability and melting behavior of Sn nanowires , 2007 .

[7]  Margit Zacharias,et al.  Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. , 2007, Small.

[8]  Chunjuan Tang,et al.  Catalyst Synthesis of Silicon-Based Zn2SiO4-SiOx Heterostructure Nanowires , 2007 .

[9]  T. Sekiguchi,et al.  Spatial distribution of impurities in ZnO nanotubes characterized by cathodoluminescence. , 2007, Journal of nanoscience and nanotechnology.

[10]  Zhong Lin Wang,et al.  Vertically aligned Zn2SiO4 nanotube/ZnO nanowire heterojunction arrays. , 2007, Small.

[11]  W. Moon,et al.  Molecular dynamics simulation of melting behavior of GaN nanowires , 2007 .

[12]  Chenglin Yan,et al.  Conversion of ZnO nanorod arrays into ZnO/ZnS nanocable and ZnS nanotube arrays via an in situ chemistry strategy. , 2006, The journal of physical chemistry. B.

[13]  Zhong Lin Wang,et al.  SiC-shell nanostructures fabricated by replicating ZnO nano-objects: a technique for producing hollow nanostructures of desired shape. , 2006, Small.

[14]  Yu Hang Leung,et al.  Optical properties of ZnO nanostructures. , 2006, Small.

[15]  Kang Zheng,et al.  Size-dependent melting behavior of Zn nanowire arrays , 2006 .

[16]  J. Thong,et al.  Multiwalled Carbon Nanotubes Beaded with ZnO Nanoparticles for Ultrafast Nonlinear Optical Switching , 2006 .

[17]  Zhengjun Zhang,et al.  Melting and optical properties of ZnO nanorods , 2006 .

[18]  H. Zeng Synthetic architecture of interior space for inorganic nanostructures , 2006 .

[19]  Younan Xia,et al.  Some recent developments in the chemical synthesis of inorganic nanotubes. , 2005, Chemical communications.

[20]  T. Sekiguchi,et al.  Aligned Zn-Zn2SiO4 core-shell nanocables with homogeneously intense ultraviolet emission at 300 nm. , 2005, The journal of physical chemistry. B.

[21]  C. Trautmann,et al.  Fragmentation of nanowires driven by Rayleigh instability , 2004 .

[22]  H. Ming,et al.  Formation mechanism of Zn 2 SiO 4 crystal and amorphous SiO 2 in ZnO/Si system , 2003 .

[23]  Heon-Jin Choi,et al.  Single-crystal gallium nitride nanotubes , 2003, Nature.

[24]  M. Dresselhaus,et al.  Nanowires and nanotubes , 2003 .

[25]  Wei Qian,et al.  Amorphous silica nanowires: Intensive blue light emitters , 1998 .

[26]  U. Gösele,et al.  Rayleigh-instability-induced metal nanoparticle chains encapsulated in nanotubes produced by atomic layer deposition. , 2008, Nano letters.