Coloured Voronoi tessellations for Bayesian image analysis and reservoir modelling

A new flexible prior for Bayesian image analysis and reservoir modelling is defined in terms of interacting coloured Voronoi cells described by a certain nearest-neighbour Markov point process. This prior can be defined in both two and three (as well as higher) dimensions, and simple MCMC algorithms can be used for drawing inference from the posterior distribution. Various 2D and 3D applications are considered.

[1]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[2]  Geoff K. Nicholls,et al.  Coloured continuum triangulation models in the Bayesian analysis of two dimensional change point problems. , 1997 .

[3]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[4]  Jesper Møller,et al.  Markov connected component fields , 1996, Advances in Applied Probability.

[5]  J. Heikkinen,et al.  Fully Bayesian Approach to Image Restoration with an Application in Biogeography , 1994 .

[6]  H. Omre,et al.  Topics in spatial statistics. Discussion and comments , 1994 .

[7]  Geoff K. Nicholls,et al.  Bayesian image analysis with Markov chain Monte Carlo and coloured continuum triangulation models , 1998 .

[8]  L. Holden,et al.  Modelling Sub-seismic Fault Patterns using a Marked Point Process , 1994 .

[9]  D. J. Doeglas Sedimentology and Petroleum Geology , 1951 .

[10]  Henning Omre,et al.  Conditioning of Marked Point Processes within a Bayesian Framework , 1997 .

[11]  Charles J. Geyer,et al.  Likelihood inference for spatial point processes , 2019, Stochastic Geometry.

[12]  Merrilee Hurn,et al.  Bayesian object identification , 1999 .

[14]  B. Ripley Statistical inference for spatial processes , 1990 .

[15]  C. Geyer,et al.  Simulation Procedures and Likelihood Inference for Spatial Point Processes , 1994 .

[16]  A. Baddeley,et al.  Practical Maximum Pseudolikelihood for Spatial Point Patterns , 1998, Advances in Applied Probability.

[17]  J. Møller,et al.  Lectures on Random Voronoi Tessellations , 1994 .

[18]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Jesper Møller,et al.  Markov chain Monte Carlo and spatial point processes , 2019, Stochastic Geometry.

[20]  C. Geyer,et al.  Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .

[21]  J. Heikkinen,et al.  Modeling a Poisson forest in variable elevations: a nonparametric Bayesian approach. , 1999, Biometrics.

[22]  A. Baddeley,et al.  Stochastic geometry models in high-level vision , 1993 .

[23]  P. Clifford,et al.  Point-based polygonal models for random graphs , 1993, Advances in Applied Probability.

[24]  N. Hjort,et al.  Topics in Spatial Statistics , 1992 .

[25]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[26]  Ragnar Hauge,et al.  Modeling of Fluvial Reservoirs with Object Models , 1998 .

[27]  W. Kendall,et al.  Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes , 2000, Advances in Applied Probability.

[28]  J. L. Jensen,et al.  Pseudolikelihood for Exponential Family Models of Spatial Point Processes , 1991 .

[29]  Håkon Tjelmeland,et al.  Markov Random Fields with Higher‐order Interactions , 1998 .

[30]  Henning Omre,et al.  A Two-Stage Stochastic Model Applied to a North Sea Reservoir , 1992 .

[31]  J. Heikkinen,et al.  Non‐parametric Bayesian Estimation of a Spatial Poisson Intensity , 1998 .

[32]  S. Mase,et al.  Packing Densities and Simulated Tempering for Hard Core Gibbs Point Processes , 2001 .

[33]  Thomas H. Scheike ANISOTROPIC GROWTH OF VORONOI CELLS , 1994 .

[34]  A. Baddeley,et al.  Nearest-Neighbour Markov Point Processes and Random Sets , 1989 .

[35]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[36]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[37]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[38]  Michael I. Miller,et al.  REPRESENTATIONS OF KNOWLEDGE IN COMPLEX SYSTEMS , 1994 .