Computational multiscale modelling of heterogeneous material layers

A computational homogenization procedure for a material layer that possesses an underlying heterogeneous microstructure is introduced within the framework of finite deformations. The macroscopic material properties of the material layer are obtained from multiscale considerations. At the macro level, the layer is resolved as a cohesive interface situated within a continuum, and its underlying microstructure along the interface is treated as a continuous representative volume element of given height. The scales are linked via homogenization with customized hybrid boundary conditions on this representative volume element, which account for the deformation modes along the interface. A nested numerical solution scheme is adopted to link the macro and micro scales. Numerical examples successfully display the capability of the proposed approach to solve macroscopic boundary value problems with an evaluation of the constitutive properties of the material layer based on its micro-constitution.

[1]  John E. Pask,et al.  Classical and enriched finite element formulations for Bloch‐periodic boundary conditions , 2009 .

[2]  P. Betsch,et al.  A localization capturing FE-interface based on regularized strong discontinuities at large inelastic strains , 2000 .

[3]  A. Menzel,et al.  Computational modelling of thermal impact welded PEEK/steel single lap tensile specimens , 2008 .

[4]  R. Hill On constitutive macro-variables for heterogeneous solids at finite strain , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[5]  小林 昭一 "MICROMECHANICS: Overall Properties of Heterogeneous Materials", S.Nemat-Nasser & M.Hori(著), (1993年, North-Holland発行, B5判, 687ページ, DFL.260.00) , 1995 .

[6]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[7]  V Varvara Kouznetsova,et al.  Computational homogenization for the multi-scale analysis of multi-phase materials , 2002 .

[8]  Christian Miehe,et al.  On the homogenization analysis of composite materials based on discretized fluctuations on the micro-structure , 2002 .

[9]  F. Lebon,et al.  Numerical study of soft adhesively bonded joints in finite elasticity , 1998 .

[10]  Raffaella Rizzoni,et al.  Asymptotic analysis of some non-linear soft thin layers , 2004 .

[11]  Francesco Costanzo,et al.  On the definitions of effective stress and deformation gradient for use in MD: Hill’s macro-homogeneity and the virial theorem , 2005 .

[12]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[13]  P. Steinmann,et al.  A finite element method for the computational modelling of cohesive cracks , 2005 .

[14]  Fpt Frank Baaijens,et al.  An approach to micro-macro modeling of heterogeneous materials , 2001 .

[15]  K. Runesson,et al.  Finite element simulation of localized plastic deformation , 1991 .

[16]  Paul Steinmann,et al.  Computational homogenization of material layers with micromorphic mesostructure , 2008 .

[17]  C. B. Hirschberger A Treatise on Micromorphic Continua. Theory, Homogenization, Computation , 2008 .

[18]  Philippe H. Geubelle,et al.  Multiscale cohesive failure modeling of heterogeneous adhesives , 2008 .

[19]  V. Bulgakov,et al.  Multinode finite element based on boundary integral equations , 1998 .

[20]  A. Menzel,et al.  Aspects of bifurcation in an isotropic elastic continuum with orthotropic inelastic interface , 2008 .

[21]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[22]  Xiaopeng Xu,et al.  Void nucleation by inclusion debonding in a crystal matrix , 1993 .

[23]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[24]  van den Mj Marco Bosch,et al.  An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion , 2006 .

[25]  M. Geers,et al.  On the development of a 3D cohesive zone element in the presence of large deformations , 2008 .

[26]  V. Kouznetsova,et al.  Multi-scale second-order computational homogenization of multi-phase materials : a nested finite element solution strategy , 2004 .

[27]  C. Miehe,et al.  Computational micro-to-macro transitions of discretized microstructures undergoing small strains , 2002 .

[28]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[29]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[30]  G. Bfer,et al.  An isoparametric joint/interface element for finite element analysis , 1985 .

[31]  de R René Borst,et al.  On the numerical integration of interface elements , 1993 .

[32]  V. Kouznetsova,et al.  Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .

[33]  Kenneth Runesson,et al.  Discontinuous Displacement Approximation for Capturing Plastic Localization , 1993 .

[34]  A MODEL ADAPTIVE STRATEGY TO CAPTURE STRONG DISCONTINUITIES AT LARGE INELASTIC STRAINS , 1998 .

[35]  Paul Steinmann,et al.  A hybrid discontinuous Galerkin/interface method for the computational modelling of failure , 2004 .

[36]  Yan Zhang,et al.  Homogenization of microsystem interconnects based on micropolar theory and discontinuous kinematics , 2007 .

[37]  Christian Miehe,et al.  Post-critical discontinuous localization analysis of small-strain softening elastoplastic solids , 1994, Archive of Applied Mechanics.

[38]  C. Miehe,et al.  Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy , 2003 .

[39]  J. Schröder,et al.  Computational homogenization analysis in finite plasticity Simulation of texture development in polycrystalline materials , 1999 .

[40]  J. Michel,et al.  Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .